the region is R is bounded by the graph of the function f(x)=1/3(x^2-2)^(3/2) the x-axis for sqrt(2) to 4 , please help me to solve this problem
in Calculus Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

We use the integral  ∫(ydx) between limits √2 and 4.

So we replace ∫ydx by (1/3)∫((x^2-2)^(3/2)dx).

Let's try substitution:

let x=secø√2, dx=(√2)secøtanødø, x^2-2=2(secø)^2-2=2((secø)^2-1)=2(tanø)^2.

The integral becomes: (1/3)∫((√2(tanø))^3*√2secøtanødø). (1/3)(2√2)(√2)=4/3.

The limits are given by √2=secø√2, secø=1=1/cosø, so ø=0; 4=secø√2, ø=cos^-1(√2/4).

(4/3)∫((tanø)^4secødø)=(4/3)S where S=∫((tanø)^4secødø).

But (tanø)^4=((secø)^2-1)^2=((secø)^4-2(secø)^2+1) for all ø as a trig identity.

S=∫((secø)^5dø)-2∫((secø)^3dø)+∫(secødø).

Derivatives of secø and tanø are respectively secøtanø and (secø)^2.

So if p=secø+tanø then dp/dø=secø(tanø+secø)=psecø. Therefore dp/p=secødø.

Integrating we get ln(p)=ln(secø+tanø)=∫secødø.

Now let p=secøtanø, then dp/dø=(secø)^3+secø(tanø)^2=2(secø)^3-secø.

So dp=(2(secø)^3-secø)dø;

integrating: p=secøtanø=2∫(secø)^3dø-∫secødø=2∫(secø)^3dø-ln(secø+tanø), from which we get 2∫(secø)^3dø=secøtanø+ln(secø+tanø).

We now have to find ∫((secø)^5dø).

∫((secø)^5dø)=∫((secø)^3.(secø)^2dø).

Let u=(secø)^3, so du=3(secø)^2secøtanødø=3(secø)^3tanødø.

Let dv=(secø)^2dø, so v=tanø.

"d(uv)=vdu+udv" so ∫udv=uv-∫vdu. Applying this rule: 

∫((secø)^5dø)=tanø(secø)^3-∫(3(secø)^3(tanø)^2dø)=tanø(secø)^3-∫(3(secø)^3((secø)^2-1)dø)=

tanø(secø)^3-3∫((secø)^5+3∫(secø)^3dø). We have the required integral on both sides of the equation: so, dividing through by 4 and substituting for ∫((secø)^3dø), we have:

∫((secø)^5dø)=(2tanø(secø)^3+3(secøtanø+ln(secø+tanø)))/8.

S=(2tanø(secø)^3+3(secøtanø+ln(secø+tanø)))/8-secøtanø-ln(secø+tanø)+ln(secø+tanø),

which simplifies to S=(2tanø(secø)^3-5secøtanø+3ln(secø+tanø))/8.

We need 4/3S=(2tanø(secø)^3-5secøtanø+3ln(secø+tanø))/6

Now we need to apply the limits: first ø=0:

S(0)=0 and ø=cos^-1(√2/4) so secø=4/√2=2√2 and tanø=√7.

(4/3)S(cos^-1(√2/4))=(2√7*16√2-10√14+3ln(2√2+√7))/6.

Definite integral becomes (22√14+3*1.7)/6=87.4166/6=14.5694 approx., which appears to be the area under the given curve between the given limits. I think!

by Top Rated User (1.2m points)

Related questions

1 answer
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,243 users