I have three identities I cannot seem to figure out.  I'm hoping someone can figure them out for me ASAP, I have to hand the problems in tomorrow.  Please show all work.  I thank you VERY, VERY much!

COS(4x) = COS^4x - 6SIN^2x COS^2x + SIN^4x

COS^4x = 1/8 (3 + 4 COS(2x) + COS(4x))

SEC^2 x/2 = 2 SEC x / SEC x + 1
in Trigonometry Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

cos(4x)=cos2(2x)-sin2(2x);

sin(2x)=2sin(x)cos(x), so sin2(2x)=4sin2(x)cos2(x);

cos(2x)=cos2(x)-sin2(x), so cos2(2x)=(cos2(x)-sin2(x))2;

cos(4x)=(cos2(x)-sin2(x))2-4sin2(x)cos2(x),

cos(4x)=cos4(x)-2sin2(x)cos2(x)+sin4(x)-4sin2(x)cos2(x),

cos(4x)=cos4(x)-6sin2(x)cos2(x)+sin4(x) QED

cos4(x)=cos(4x)+6sin2(x)cos2(x)-sin4(x) (from the line above)

cos4(x)=cos(4x)+6(1-cos2(x))cos2(x)-(1-cos2(x))2,

cos4(x)=cos(4x)+6cos2(x)-6cos4(x)-1+2cos2(x)-cos4(x),

8cos4(x)=cos(4x)+8cos2(x)-1=cos(4x) +(8cos2(x)-4)+3,

8cos4(x)=cos(4x)+4(2cos2(x)-1)+3=cos(4x)+4cos(2x)+3,

cos4(x)=⅛(3+4cos(2x)+cos(4x)) QED

sec2(x/2)=1/cos2(x/2); cos(x)=2cos2(x/2)-1, cos2(x/2)=½(1+cos(x)),

sec2(x/2)=2/(1+cos(x)).

Multiply top and bottom by sec(x): sec2(x/2)=2sec(x)/(sec(x)+1) QED

by Top Rated User (1.2m points)

Related questions

1 answer
asked Mar 17, 2013 in Trigonometry Answers by Amy Level 1 User (180 points) | 851 views
1 answer
asked Mar 17, 2013 in Trigonometry Answers by Amy Level 1 User (180 points) | 1.2k views
1 answer
1 answer
1 answer
1 answer
1 answer
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,411 users