This cannot be an identity for all arbitrary values of A, B and C, because, for example, if A=B=C=0 then 0=1 which is false, so we need to assume a connection between A, B and C. Let's assume A+B+C=180° (as in a triangle). Then C=180-(A+B).
Now let A=B=C=60 (equilateral triangle) and check:
3tan(30)tan(30)=3(1√3)2=1. So the identity is true in this case.
Let A=B=45°, so C=90° and tan(½C)=1.
tan(2x)=2tan(x)/(1-tan2(x)) so if x=22.5°, then 1=2tan(22.5)/(1-tan2(22.5)). Let t= tan(22.5), then:
1=2t/(1-t2), 1-t2=2t, t2+2t=1, t2+2t+1=2, (t+1)2=2, t+1=±√2, t=√2-1 gives us a positive angle, so tan(22.5)=√2-1.
Put the proposed identity to the test:
tan2(22.5)+tan(22.5)+tan(22.5)=(√2-1)2+√2-1+√2-1=
3-2√2+2√2-2=1, and the identity is true.
Now we can be reasonably sure that if C=180-(A+B), the identity is always true.
If C=180-(A+B), ½C=90-½(A+B). tan(½C)=cot(½(A+B))=1/tan(½(A+B)).
tan(½A+½B)=(tan(½A)+tan(½B))/(1-tan(½A)tan(½B));
tan(½C)=1/tan(½(A+B))=(1-tan(½A)tan(½B))/(tan(½A)+tan(½B))
So the LHS of the proposed identity is:
tan(½A)tan(½B)+tan(½C)(tan(½A)+tan(½B))=
tan(½A)tan(½B)+(1-tan(½A)tan(½B))[(tan(½A)+tan(½B))/(tan(½A)+tan(½B))]=
tan(½A)tan(½B)+1-tan(½A)tan(½B)=1 QED