Find the nth derivative of the following
in Trigonometry Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

cos(A-B)=cosAcosB+sinAsinB; cos(A+B)=cosAcosB-sinAsinB;

cos(A-B)-cos(A+B)=2sinAsinB.

Let A=6x and B=5x, then A-B=x and A+B=11x, and cos(x)-cos(11x)=2sin(6x)sin(5x).

sin(6x)sin(5x)=½(cos(x)-cos(11x));

sin(6x)sin(5x)sin(11x)=½(cos(x)-cos(11x))sin(11x)=½cos(x)sin(11x)-½sin(11x)cos(11x),

sin(6x)sin(5x)sin(11x)=½cos(x)sin(11x)-¼sin(22x).

sin(A+B)=sinAcosB+cosAsinB; sin(A-B)=sinAcosB-cosAsinB,

sin(A+B)+sin(A-B)=2sinAcosB.

Let A=11x and B=x, then sin(12x)+sin(10x)=2sin(11x)cos(x), therefore:

sin(6x)sin(5x)sin(11x)=½cos(x)sin(11x)-¼sin(22x)=¼(sin(12x)+sin(10x)-sin(22x).

Let y1=¼sin(12x), y2=¼sin(10x), y3=-¼sin(22x), so y= y1+y2+y3.

The derivative of the sum y is the sum of the derivatives of y1, y2 and y3.

y1'=3cos(12x), y2'=(5/2)cos(10x), y3'=-(11/2)cos(22x),

y1"=-36sin(12x)=-144y1,  y2"=-25sin(10x)=-100y2, y3"=121sin(22x)=-484y3.

This gives us a pattern for higher derivatives.

Let integer n≥0 denote the degree of the derivative: y(n), where n=0 implies y, y(1)=y'=dy/dx, etc.

Now consider 4 different values of n: 4k, 4k+1, 4k+2, 4k+3 where integer k≥0.

Consider derivatives of y1 as an example:

y1(0)=¼sin(12x), y1(1)=3cos(12x),

y1(2)=-122y1(0), y1(3)=-122y1(1)

y1(4)=-122y1(2)=124y1(0)=(124/4)sin(12x),

y1(4k)=124ky1(0)=(124k/4)sin(12x)=((3×4)4k/4)sin(12x)=(34k44k-1)sin(12x);

y1(4k+1)=(34k44k-1)(12cos(12x)=(34k+144k)cos(12x);

y1(4k+2)=-(34k+244k+1)sin(12x);

y1(4k+3)=-(34k+344k+2)cos(12x).

The same rules apply mutatis mutandis to the other y's:

y2(4k)=(54k24k-2)sin(10x); y2(4k+1)=(54k+124k-1)cos(10x);

y2(4k+2)=-(54k+224k)sin(10x); y2(4k+3)=-(54k+324k+1)cos(10x).

y3(4k)=-(114k24k-2)sin(22x); y3(4k+1)=-(114k+124k-1)cos(22x);

y3(4k+2)=(114k+224k)sin(22x); y3(4k+3)=(114k+324k+1)cos(22x).

So we can write:

y(4k)=(34k44k-1)sin(12x)+(54k24k-2)sin(10x)-(114k24k-2)sin(22x);

y(4k+1)=(34k+144k)cos(12x)+(54k+124k-1)cos(10x)-(114k+124k-1)cos(22x);

y(4k+2)=-(34k+244k+1)sin(12x)-(54k+224k)sin(10x)+(114k+224k)sin(22x);

y(4k+3)=-(34k+344k+2)cos(12x)-(54k+324k+1)cos(10x)+(114k+324k+1)cos(22x).

by Top Rated User (1.2m points)

Related questions

1 answer
asked Sep 21, 2012 in Calculus Answers by anonymous | 930 views
1 answer
asked Feb 24, 2013 in Trigonometry Answers by anonymous | 1.0k views
1 answer
asked Nov 28, 2016 in Calculus Answers by Muhammad Safeer | 810 views
2 answers
asked May 5, 2013 in Trigonometry Answers by anonymous | 1.6k views
1 answer
asked Mar 7, 2013 in Trigonometry Answers by anonymous | 1.4k views
1 answer
1 answer
asked Nov 27, 2016 in Calculus Answers by Muhammad Safeer | 596 views
2 answers
1 answer
1 answer
2 answers
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,285 answers
2,420 comments
734,378 users