cos(A-B)=cosAcosB+sinAsinB; cos(A+B)=cosAcosB-sinAsinB;
cos(A-B)-cos(A+B)=2sinAsinB.
Let A=6x and B=5x, then A-B=x and A+B=11x, and cos(x)-cos(11x)=2sin(6x)sin(5x).
sin(6x)sin(5x)=½(cos(x)-cos(11x));
sin(6x)sin(5x)sin(11x)=½(cos(x)-cos(11x))sin(11x)=½cos(x)sin(11x)-½sin(11x)cos(11x),
sin(6x)sin(5x)sin(11x)=½cos(x)sin(11x)-¼sin(22x).
sin(A+B)=sinAcosB+cosAsinB; sin(A-B)=sinAcosB-cosAsinB,
sin(A+B)+sin(A-B)=2sinAcosB.
Let A=11x and B=x, then sin(12x)+sin(10x)=2sin(11x)cos(x), therefore:
sin(6x)sin(5x)sin(11x)=½cos(x)sin(11x)-¼sin(22x)=¼(sin(12x)+sin(10x)-sin(22x).
Let y1=¼sin(12x), y2=¼sin(10x), y3=-¼sin(22x), so y= y1+y2+y3.
The derivative of the sum y is the sum of the derivatives of y1, y2 and y3.
y1'=3cos(12x), y2'=(5/2)cos(10x), y3'=-(11/2)cos(22x),
y1"=-36sin(12x)=-144y1, y2"=-25sin(10x)=-100y2, y3"=121sin(22x)=-484y3.
This gives us a pattern for higher derivatives.
Let integer n≥0 denote the degree of the derivative: y(n), where n=0 implies y, y(1)=y'=dy/dx, etc.
Now consider 4 different values of n: 4k, 4k+1, 4k+2, 4k+3 where integer k≥0.
Consider derivatives of y1 as an example:
y1(0)=¼sin(12x), y1(1)=3cos(12x),
y1(2)=-122y1(0), y1(3)=-122y1(1)
y1(4)=-122y1(2)=124y1(0)=(124/4)sin(12x),
y1(4k)=124ky1(0)=(124k/4)sin(12x)=((3×4)4k/4)sin(12x)=(34k44k-1)sin(12x);
y1(4k+1)=(34k44k-1)(12cos(12x)=(34k+144k)cos(12x);
y1(4k+2)=-(34k+244k+1)sin(12x);
y1(4k+3)=-(34k+344k+2)cos(12x).
The same rules apply mutatis mutandis to the other y's:
y2(4k)=(54k24k-2)sin(10x); y2(4k+1)=(54k+124k-1)cos(10x);
y2(4k+2)=-(54k+224k)sin(10x); y2(4k+3)=-(54k+324k+1)cos(10x).
y3(4k)=-(114k24k-2)sin(22x); y3(4k+1)=-(114k+124k-1)cos(22x);
y3(4k+2)=(114k+224k)sin(22x); y3(4k+3)=(114k+324k+1)cos(22x).
So we can write:
y(4k)=(34k44k-1)sin(12x)+(54k24k-2)sin(10x)-(114k24k-2)sin(22x);
y(4k+1)=(34k+144k)cos(12x)+(54k+124k-1)cos(10x)-(114k+124k-1)cos(22x);
y(4k+2)=-(34k+244k+1)sin(12x)-(54k+224k)sin(10x)+(114k+224k)sin(22x);
y(4k+3)=-(34k+344k+2)cos(12x)-(54k+324k+1)cos(10x)+(114k+324k+1)cos(22x).