F(x)= ( x-6.36)^2 +1.11  what is a and put it in standard form

how do you find a and also put in standard form what is the axis of symmetry and  what is the y intercept find the zeros  and is the parabola upward or downward
in Algebra 2 Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

2 Answers

If by a you are referring to the form (y-k)=a(x-h)^2. So a=1 and (h,k) is the vertex, with x=h as the line of symmetry. The parabola is like a U, because a>0. (h,k) is (6.36,1.11) and the axis of symmetry is x=6.36. When x=0, y=f(x)=ah^2+k=6.36^2+1.11=41.5596, y intercept. The zeroes are not real, they're complex, because the graph does not cross the x axis (when y=f(x)=0). The minimum value of y is at the vertex.

The polynomial can also be written in the form y=ax^2+bx+c;

a=1, so y=f(x)=x^2+bx+c=x^2-12.72x+40.4496+1.11=x^2-12.72x+41.5596.

The complex zeroes are found by solving (x-6.36)=+sqrt(-1.11)=+isqrt(1.11); x=6.36+isqrt(1.11)=6.36+1.0536i.

by Top Rated User (1.2m points)

So you say a=1, so y=f(x)=x^2+bx+c=x^2-12.72x+40.4496+1.11=x^2-12.72x+41.5596 and The complex zeroes are found by solving (x-6.36)=+sqrt(-1.11)=+isqrt(1.11); x=6.36+isqrt(1.11)=6.36+1.0536i. Good answer Rod! Awesome! You cool.

You might go with a=1 and (h,k) is the vertx, with x=h as the lin of symmetry like Rod said. GO with his instead of mine because he is more specific than I am.
by Level 10 User (57.4k points)

Related questions

1 answer
asked Apr 20, 2016 in Algebra 1 Answers by anonymous | 548 views
1 answer
0 answers
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
731,859 users