CN you solve this step by step..rational expressions
in Algebra 1 Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

2 Answers

x^2 -x -20/18=0... x^2 -x -1.11111111...=0... quadratik equashun giv... roots=1.666666666666 & -0.6666666666666
by

I read this as (k^2-k-20)/18.

What pair of factors of 20 differ by 1? This is essentially what the quadratic in k is asking. The pairs of factors of 20 are (1,20), (2,10), (4,5) and the only pair with a difference of 1 is (4,5). The larger of the two has a minus and the other a plus to make the difference -1 which is the coefficient of the middle term. So k^2-k-20 factorises: (k-5)(k+4). And we place this over 18: (k-5)(k+4)/18. This won't factorise any further.

When I was reviewing this question I felt there was more to it. Supposing the question was: what values can k take so that the expression is an integer? I spotted something interesting. The zeroes of the quadratic are 5 and -4: either of these values make the expression zero. But 5+4=9, and 9 is a factor of 18, the denominator. We can write the factors of the quadratic as y(y-9)/18, where y replaces k+4; or we can write y(y+9)/18, where y replaces k-5. The pairs of factors of 18 are (1,18), (2,9), (3,6). If the numerator contains any of these pairs, the expression will be an integer, or whole number, positive or negative.

What values of y must we have so that y(y-9)/18 is an integer? Let's start with y=0; the expression is zero, which is an integer. Now y=3; we have 3(-6)/18=-1, another integer. y=6; 6(-3)/18=-1. y=9; we get 0. y=12 we get 12*3/18=2. y=15; we get 15*6/18=5. In fact, all multiples of 3 work, so we can write y=3N as the general solution, where N is a positive or negative integer. What about k? We know that y=k+4 or k-5 so k+4=3N or k-5=3N are solutions. We can write these solutions as k=3N-4 or k=3N+5. If N=0 we have -4 and 5, which are the zeroes of the quadratic. If N=1, k=-1 or 8; if N=2, k=2 or 11; if N=3, k=5 or 14; if N=4, k=8 or 17; and so on.

If you substitute these and other values of k (according to the formula) you'll see that the expression is always an integer.

by Top Rated User (1.2m points)

Related questions

1 answer
asked Apr 16, 2015 in Algebra 1 Answers by hatchett | 604 views
1 answer
asked Jan 6, 2019 in Pre-Algebra Answers by Anshul Gurjar | 463 views
1 answer
1 answer
asked Jun 13, 2014 in Algebra 1 Answers by anonymous | 758 views
1 answer
1 answer
1 answer
1 answer
asked Oct 9, 2013 in Calculus Answers by ALISSA | 701 views
2 answers
asked Oct 3, 2013 in Other Math Topics by shunterrica | 671 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,285 answers
2,420 comments
734,812 users