plz its urgent give me the solution
in Calculus Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

3 Answers

x•y"+y'+xy=0 Let y=summation power +∞ base n=0 a base n X^n,
by Level 12 User (101k points)
edited by
Let y=summation power+∞ base n=0 a base n X^n, y'= summation power +∞ base n=1 na base n X^n-1, y"=summation power +∞ base n=2 n(n-1)a base nX^n-2 Then, the given becomes: summation +∞ base n=2 n(n-1)a base n X^n-1 + summation +∞ base n=0 a base n•X^n+1 + summation +∞ base n=1 na base n•X^n-1 =0 , Summation power +∞ base n=0 (n+1)•(n+2) a base n+2 X^n+1 + summation power +∞ base n=0 a base n•X^n+1 = - summation power +∞ base n=0 • a base n •X^n+1 , The reccurence formula is :a base n+2= -a base n/(n+2)^2 a base o _= a base o a base 1 _= a base 1 a base 2= - a base o/2^2 a base 3= - a base 1/3^2 a base 4= + a base o/(2•4)^2 a base 5= + a base 1/(3•5)^2 a base 6= - a base o/(2•4•6)^2 a base 7= - a base 1/(3•5•7)^2 Therefore: y, ≈ a base o •[1-(x^2/2)^1 + (x^2/2•4)^2 - (x^2/2•4•6)^3 + — ....] , y base 2 ≈ a base 1 •[x - x^3/3^2 + x^5/(3•5)^2 - x^7/(3•5•7)^2 + — ...] (R=∞) Working out the pattern we ibtain: y(x)= a base o • summation power +∞ base n=0 (-1)^n • X^2n/2^2n • (n!)^2 + a base 1 • summation power +∞ base n=0 (-1)^n • 2^2n • (n!)^2/[(2n+1)!]^2 X^2n+1
by Level 12 User (101k points)

Let F=xy"+y'+xy=0.

A power series for x can be written:

y=a0+a1x+a2x^2+a3x^3+a4x^4+...+a[r]x^r+...; or y=∑a[r]x^r for 0≤r≤∞ or y=∑a[r]x^r{0,∞}.

y'=a1+2a2x+3a3x^2+4a4x^3+...+ra[r]x^(r-1)+...; or y'=∑ra[r]x^(r-1){0,∞};

y"=2a2+6a3x+12a4x^2+...+r(r-1)a[r]x^(r-2)+...; or y"=∑r(r-1)a[r]x^(r-2){0,∞};

Substituting for y and its derivatives in F:

xy"=2a2x+6a3x^2+12a4x^3+...+r(r-1)a[r]x^(r-1)+...; or xy"=∑r(r-1)a[r]x^(r-1){0,∞};

y'=a1+2a2x+3a3x^2+4a4x^3+...+ra[r]x^(r-1)+...; or y'=∑ra[r]x^(r-1){0,∞};

xy=a0x+a1x^2+a2x^3+a3x^4+a4x^5+...+a[r]x^(r+1)+...; or y=∑a[r]x^r(r+1) for 0≤r≤∞ or y=∑a[r]x^r{0,∞}.

We can add xy" to y' combining like powers of x: xy"+y'=∑(r(r-1)a[r]x^(r-1)+ra[r]x^(r-1)){0,∞}.

This simplifies because ra[r]x^(r-1) term cancels out and we get xy"+y'=∑r^2a[r]x^(r-1){0,∞}.

To add in the last term xy so that the same power of x is used we have to step back two terms. Let's see what happens if we expand the summation:

xy"+y'+xy=a1+x(a0+4a2)+x^2(a1+9a3)+x^3(a2+16a4)+x^4(a3+25a5)+...

A pattern emerges so we can write F=a1+∑x^(r-1)(a[r-2]+r^2a[r]{2,∞}=0.

The terms have to sum to zero, so a1=0, implying that a3, a5, etc.=0.

Now we need to find a relationship between a0, a2, a4, etc.

a[r-2]+r^2a[r]=0, so a[r]=-a[r-2]/r^2. When r=2, we get a2=-a0/2^2.

From this it follows that, putting r=4, we get a4=-a2/4^2=(-1/4^2)(-1/2^2)a0=a0/((2^2)(4^2)).

And when r=6: a6=-a0/((2^2)(4^2)(6^2)). a8=a0/((2^2)(4^2)(6^2)(8^2)). We can see a pattern emerging.

(2^2)(4^2)(6^2)(8^2)=(2*4*6*8)^2=(1*2*3*4)^2 * (2^2)^4. If r=2n, then in general we get ((n!)^2)(2^2n).

[CHECK: n=1, (1^2)(2^2)=4; n=2, (2^2)(2^4)=64; n=3, (6^2)(2^6)=2304.]

But terms have alternating signs. When n=1, the sign is negative, when n=2 it's positive so we introduce the factor (-1)^n to get the right sign. Write a0 as constant a, and then all other terms are multiples of a (effectively a constant of integration).

For example, a2=-a/4, a4=-a2/16=a/64, a6=-a4/36=-a/2304, etc.

Therefore y=a(1-x^2/4+x^4/64-x^6/2304+...+(-1)^n.x^(2n)/((n!)^2)(2^2n))+...).

by Top Rated User (1.2m points)

Related questions

1 answer
1 answer
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,242 users