y'=dy/dt=[a(cos(t)+b)]yt-yt3, so:
(1/y)dy/dt=[a(cos(t)+b)]t-t3=atcos(t)+abt-t3.
∫dy/y=∫(atcos(t)+abt-t3)dt=a∫tcos(t)dt+½abt2-¼t4+C where C is the constant of integration.
To solve ∫tcos(t)dt, let u=t, then du=dt and let dv=cos(t)dt, then v=sin(t).
∫tcos(t)dt=∫udv=uv-∫vdu=tsin(t)-∫sin(t)dt=tsin(t)+cos(t).
∫dy/y=ln(y)=atsin(t)+acos(t)+½abt2-¼t4+C, or y=Aeatsin(t)+acos(t)+½abt²-¼t⁴, where A=eC (i.e., another constant replacing C).