18x2-59xy-220y2=(2x-11y)(9x+20y). Is that what you meant?
How to work it out:
factor pairs (x-set) for 18=(1,18), (2,9), (3,6); (a,c) values (see below).
factor pairs (y-set) for 220=(1,220), (2,110), (4, 55), (5,44), (10,22), (11,20); (b,d) values.
(ax-by)(cx+dy)=acx2+xy(ad-bc)-bdy2. Note the opposite signs in the factors.
The table below contains all possible combinations of the coefficients a, b, c, d. The key column is ad-bc. This is the coefficient of the xy term. We want the number -59.
The highlighted row contains -59 because ad-bc=-59. So since a=2, b=11, c=9, d=20 the expression factors: (2x-11y)(9x+20y).
a |
b |
c |
d |
ad |
bc |
ad-bc |
1 |
1 |
18 |
220 |
220 |
18 |
202 |
2 |
1 |
9 |
220 |
440 |
9 |
431 |
3 |
1 |
6 |
220 |
660 |
6 |
654 |
18 |
1 |
1 |
220 |
3960 |
1 |
3959 |
9 |
1 |
2 |
220 |
1980 |
2 |
1978 |
6 |
1 |
3 |
220 |
1320 |
3 |
1317 |
1 |
2 |
18 |
110 |
110 |
36 |
74 |
2 |
2 |
9 |
110 |
220 |
18 |
202 |
3 |
2 |
6 |
110 |
330 |
12 |
318 |
18 |
2 |
1 |
110 |
1980 |
2 |
1978 |
9 |
2 |
2 |
110 |
990 |
4 |
986 |
6 |
2 |
3 |
110 |
660 |
6 |
654 |
1 |
4 |
18 |
55 |
55 |
72 |
-17 |
2 |
4 |
9 |
55 |
110 |
36 |
74 |
3 |
4 |
6 |
55 |
165 |
24 |
141 |
18 |
4 |
1 |
55 |
990 |
4 |
986 |
9 |
4 |
2 |
55 |
495 |
8 |
487 |
6 |
4 |
3 |
55 |
330 |
12 |
318 |
1 |
5 |
18 |
44 |
44 |
90 |
-46 |
2 |
5 |
9 |
44 |
88 |
45 |
43 |
3 |
5 |
6 |
44 |
132 |
30 |
102 |
18 |
5 |
1 |
44 |
792 |
5 |
787 |
9 |
5 |
2 |
44 |
396 |
10 |
386 |
6 |
5 |
3 |
44 |
264 |
15 |
249 |
1 |
10 |
18 |
22 |
22 |
180 |
-158 |
2 |
10 |
9 |
22 |
44 |
90 |
-46 |
3 |
10 |
6 |
22 |
66 |
60 |
6 |
18 |
10 |
1 |
22 |
396 |
10 |
386 |
9 |
10 |
2 |
22 |
198 |
20 |
178 |
6 |
10 |
3 |
22 |
132 |
30 |
102 |
1 |
11 |
18 |
20 |
20 |
198 |
-178 |
2 |
11 |
9 |
20 |
40 |
99 |
-59 |
3 |
11 |
6 |
20 |
60 |
66 |
-6 |
18 |
11 |
1 |
20 |
360 |
11 |
349 |
9 |
11 |
2 |
20 |
180 |
22 |
158 |
6 |
11 |
3 |
20 |
120 |
33 |
87 |
In practice, you probably don't need the full table, as many possibilities can be mentally perceived as unlikely. Nevertheless, this method does ensure that rational factors can always be found if they exist.