z6=(1-i√3)6=1-6i√3+15(-i√3)2+20(-i√3)3+15(-i√3)4+6(-i√3)5+(-i√3)6,
(-i)2=-1; (-i)3=i; (-i)4=1; (-i)5=-i; (-i)6=-1;
z6=1-6i√3-45+60i√3+135-54i√3-27=64;
z3=1-3i√3+3(-i√3)2+(-i√3)3=1-3i√3-9+3i√3=-8.
[By de Moivre:
z=aeniθ=a(cos(nθ)+isin(nθ)).
z=a(cosθ+isinθ)=1-i√3, acosθ=1, asinθ=-√3, a2=1+3=4, a=2; tanθ=-√3, θ=-π/3.
z=2(cos(-π/3)+isin(-π/3))=2(½-½√3)=1-√3✔️ (n=1)
z3=23(cos(-π)+isin(-π))=8(-1+0)=-8; z6=64 (n=3)]
z6+4(i-1)z3+p+qi=0 becomes 64+4(i-1)(-8)+p+qi=0,
64-32i+32+p+qi=0, 96-32i+p+qi=0.
p=-96, q=32.