Let 3x2-2x-6=0, then the solution to this equation will be the roots.
3x2-2x=6,
x2-⅔x=2,
x2-⅔x+1/9=2+1/9,
(x-⅓)2=19/9,
(x-⅓)2-19/9=0. Now we factorise the difference of two squares: a2-b2=(a-b)(a+b):
(x-⅓)2-(√19/3)2=(x-⅓-⅓√19)(x-⅓+⅓√19)=0,
so x-⅓-⅓√19=0⇒x=⅓(1+√19); or:
x-⅓+⅓√19=0⇒x=⅓(1-√19).
The same result is obtained using the Quadratic Formula.
The original expression can be written:
3(x-⅓-⅓√19)(x-⅓+⅓√19) or (3x-1-√19)(x-⅓+⅓√19).