sin(36)=sin(180-36)=sin(144); sin(108)=sin(180-108)=sin(72).
So sin(36)sin(144)sin(108)sin(72)=sin2(36)sin2(72).
According to de Moivre:
eniθ=cos(nθ)+isin(nθ)=(cosθ+isinθ)n. Let n=5:
e5iθ=cos(5θ)+isin(5θ)=(cosθ+isinθ)5,
cos(5θ)+isin(5θ)=cos5θ+5icos4θsinθ-10cos3θsin2θ-10icos2θsin3θ+5cosθsin4θ+isin5θ (binomial expansion).
Equating imaginary parts:
sin(5θ)=5cos4θsinθ-10cos2θsin3θ+sin5θ.
cos2θ=1-sin2θ, so cos4θ=(1-sin2θ)2=1-2sin2θ+sin4θ;
sin(5θ)=5sinθ-10sin3θ+5sin5θ-10sin3θ+10sin5θ+sin5θ,
sin(5θ)=16sin5θ-20sin3θ+5sinθ.
[This sine of a multiple angle can also be found by progressively applying the identity sin(A+B)=sinAcosB+cosAsinB until the expression only contains the sine of a single angle. De Moivre offers a quicker way to attain such an expression.]
Since θ=36°, sin(5θ)=sin(180)=0:
0=sinθ(16sin4θ-20sin2θ+5), 16sin4θ-20sin2θ+5=0, since sinθ≠0.
Applying the quadratic formula:
sin2θ=sin2(36)=(20±√(400-320))/32=(20±4√5)/32=(5±√5)/8.
Only one of these solutions can be correct. Since sin2(30)=¼=0.25 and sin2(45)=½=0.5:
0.25<sin2(36)<0.5. But (5+√5)/8≈0.9, so we can only accept sin2(36)=(5-√5)/8=0.35 approx.
sin2(72)=(2sin(36)cos(36))2=4sin2(36)cos2(36)=
4sin2(36)(1-sin2(36))=½(5-√5)(1-(5-√5)/8),
sin2(72)=(1/16)(5-√5)(3+√5).
sin2(36)sin2(72)=(1/128)(5-√5)2(3+√5)=(1/128)(30-10√5)(3+√5)=
(1/128)(90-50)=40/128=5/16 (QED).