solve the following by monges method , xy( t-r)+(x^2-y^2)(s-2)=py-qx
in Other Math Topics by

Are you assuming p=∂z/∂x, q=∂z/∂y, r=∂2z/∂x2, s=∂2z/∂x∂y, t=∂2z/∂y2?

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Using the equivalences in the comments, we can also write the following partial derivatives with some manipulation:

r=∂p/∂x, s=∂p/∂y and s=∂q/∂x, t=∂q/∂y from the definitions of p=∂z/∂x and q=∂z/∂y.

p and q are functions of x and y only, so only partial derivatives wrt x and y are required.

And we can relate partial to full derivatives (for p(x,y) and q(x,y)):

dz=(∂z/∂x)dx+(∂z/∂y)dy=pdx+qdy; similarly:

dp=rdx+sdy, dq=sdx+tdy. From these we get: r=(dp-sdy)/dx and t=(dq-sdx)/dy.

The given PDE needs to be written in the form: Rr+Ss+Tt=V:

-xyr+(x2-y2)s+xyt=2x2-2y2+py-qx, so:

R=-xy, S=x2-y2, T=xy, V=2x2-2y2+py-qx.

Rr+Ss+Tt=R(dp-sdy)/dx+Ss+T(dq-sdx)/dy=V,

Rdy(dp-sdy)+Ssdxdy+Tdx(dq-sdx)=Vdxdy,

Rdydp-sRdy2+sSdxdy+Tdxdq-sTdx2-Vdxdy=0,

Rdydp+Tdxdq-Vdxdy=s(Rdy2-Sdxdy+Tdx2).

One possible solution to these equations is:

Rdydp+Tdxdq-Vdxdy=0 and Rdy2-Sdxdy+Tdx2=0 (Monge's subsidiary equations).

That is:

-xydydp+xydxdq-(2x2-2y2+py-qx)dxdy=0 and:

-xy(dy)2-(x2-y2)dxdy+xy(dx)2=0,

(dy)2+(x/y-y/x)dxdy-(dx)2=0.

Consider (dy-m1dx)(dy-m2dx)=(dy)2-(m1+m2)dxdy+m1m2(dx)2=0.

So m1+m2=y/x-x/y and m1m2=-1; m1=y/x, m2=-x/y, making m1m2=-1.

dy-(ydx/x)=0, xdy=ydx; or, dy+xdx/y=0, ydy=-xdx. We have two auxiliary integrals:

(1) dy/y-dx/x=0; integrating: ln|y|-ln|x|=k, ln|y/x|=k, or y/x=ek, which we can write y/x=a, a constant, so y=ax and dy=adx.

(2) ydy+xdx=0; integrating: ½y2+½x2=c, a positive constant (because the sum of the squares of two real numbers is always positive), which can be written x2+y2=b2, where c=b2.

Therefore, ydy=-xdx, and y=√(b2-x2), so dy=-xdx/y=-xdx/√(b2-x2).

We can use these to make substitutions in the other subsidiary equation.

(1)⇒(1i) -x(ax)(adx)dp+x(ax)dxdq-(2x2-2(ax)2+p(ax)-qx)dx(adx)=0, (substituting y=ax and dy=adx)

-a2x2dxdp+ax2dxdq-a(2x2-2a2x2+apx-qx)(dx)2=0,

-a2x2dxdp+ax2dxdq-2ax2(dx)2+2a3x2(dx)2-a2px(dx)2+aqx(dx)2=0,

axdx(-axdp+xdq-2xdx+2a2xdx-apdx+qdx)=0

-axdp+xdq-2xdx+2a2xdx-apdx+qdx=0,

-a(xdp+pdx)+(xdq+qdx)+2xdx(a2-1)=0.

This is integrable: -apx+qx+(a2-1)x2=c, a constant.

We have a=y/x and c=-apx+qx+(a2-1)x2, so, if c=f1(a), where f1 is an arbitrary function:

-apx+qx+(a2-1)x2=f1(y/x).

(2)⇒(2i) -xydydp+xydxdq-(2x2-2y2+py-qx)dxdy=0 is the subsidiary equation. 

Substitute y=√(b2-x2) and dy=-xdx/√(b2-x2) (also ydy=-xdx).

-x(-xdx)dp+x√(b2-x2)dxdq-(2x2-2(b2-x2)+p√(b2-x2)-qx)dx(-xdx/√(b2-x2))=0.

We can divide through by xdx:

xdp+√(b2-x2)dq+(4x2-2b2+p√(b2-x2)-qx)dx/√(b2-x2)=0,

xdp+√(b2-x2)dq+(4x2-2b2)dx/√(b2-x2)+pdx-qxdx/√(b2-x2)=0,

d(px)+d(q√(b2-x2))+(4x2-2b2)dx/√(b2-x2)=0.

Integrating: px+q√(b2-x2)+∫[(4x2-2b2)/√(b2-x2)]dx=c, a constant.

Let F(x)=(4x2-2b2)dx/√(b2-x2), then c=px+q√(b2-x2)+F(x). (F(x) is integrable, but to save space the integration is not shown here.)

We have b2=x2+y2 and c=px+q√(b2-x2)+F(x). If c=f2(b2) then:

px+q√(b2-x2)+F(x)=f2(x2+y2). But -apx+qx+(a2-1)x2=f1(y/x), q=(apx+f1(y/x)-(a2-1)x2)/x from (1i).

px+(apx+f1(y/x)-(a2-1)x2)/x)√(b2-x2)+F(x)=f2(x2+y2),

(px2+apx+f1(y/x)-(a2-1)x2)√(b2-x2)+xF(x)=xf2(x2+y2),

p(x2+ax)√(b2-x2)=xf2(x2+y2)-xF(x)-(f1(y/x)-(a2-1)x2)√(b2-x2),

p=(xf2(x2+y2)-xF(x)-(f1(y/x)-(a2-1)x2)√(b2-x2))/((x2+ax)√(b2-x2)).

dz=pdx+qdy, so p and q can be substituted (!) to get dz in terms of x and y.

The above calculations need to be verified and corrected if necessary...

by Top Rated User (1.2m points)

Related questions

1 answer
asked Nov 30, 2022 in Other Math Topics by anonymous | 656 views
0 answers
asked Oct 13, 2012 in Calculus Answers by anonymous | 637 views
1 answer
1 answer
asked Aug 30, 2023 in Algebra 1 Answers by anonymous | 379 views
1 answer
asked Dec 24, 2022 by Md Anas | 333 views
1 answer
asked Oct 13, 2022 in Algebra 1 Answers by anonymous | 1.2k views
2 answers
asked Aug 25, 2020 in Algebra 1 Answers by anonymous | 5.8k views
2 answers
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,204 users