They want x-4/x
in Word Problem Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

2x√x+16=9x. Need to find x-4/x.

Let y²=x, then 2y³+16=9y², 2y³-9y²+16=0.

When y=4, we have 128-144+16=0 so y=4 is a root. If you draw a graph of the cubic you can see that y=4 is a solution.

We can now reduce the cubic to a quadratic by dividing by y-4: 2y²-y-4.

Since y=4 and x=y², x=16 is a solution, and x-4/x=16-4/16=15¾.

The other two roots for y are (1±√33)/4.

If y=(1±√33)/4, x=(17±√33)/8 and x-4/x=±√33/4=±1.43614 approx.

The reason is that x-4/x=(17±√33)/8-32/(17±√33).

When this is rationalised: (17±√33)/8-32(17∓√33)/(289-33),

(17±√33)/8-(17∓√33)/8=±√33/4.

When we substitute x=(17±√33)/8 into the original equation we find that only (17+√33)/8 satisfies it. The other value for x doesn’t satisfy the equation because the square root is assumed to be positive. If we allow the negative square root, then the equation is satisfied. There seem to be two solutions then to the value of x-4/x: 63/4 (or 15¾ or 15.75) and √33/4=1.43614 approx.

by Top Rated User (639k points)

Related questions

0 answers
asked Mar 25, 2013 in Algebra 2 Answers by anonymous | 75 views
1 answer
asked Aug 29, 2012 in Calculus Answers by anonymous | 172 views
1 answer
asked Dec 20, 2017 in Pre-Algebra Answers by anonymous | 43 views
1 answer
asked May 22, 2015 in Algebra 2 Answers by tracie | 141 views
1 answer
asked May 21, 2013 in Calculus Answers by anonymous | 85 views
0 answers
asked Apr 23, 2013 in Algebra 2 Answers by anonymous | 114 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
82,833 questions
87,430 answers
1,964 comments
3,916 users