Given that p+q+r=0, solve the following equations for x: 

p-x r q
r q-x p
q p r-x

the entire matrix should be set equal to 0. (I guess this means that its determinant is 0)

asked Mar 19 in Calculus Answers by anonymous

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer


If we assume that, not only is the determinant zero, but that the components of the determinant give rise to three equations that equate to zero, then we have four equations and four unknowns. This implies we have sufficient information to find all four unknowns.

The determinant is:


If each of the square-bracketed expressions is zero then the determinant will also be zero. So:-

(q-x)(r-x)-p²=0 ①

r(r-x)-pq=0 ② 

pr-q(q-x)=0 ③ 

Also r=-(p+q). So ③ becomes -p(p+q)-q(q-x)=0, -p²-pq-q²+qx=0, x=(p²+pq+q²)/q.

And ② becomes r²-rx-pq=0, (p+q)²+(p+q)(p²+pq+q²)/q-pq=0.


The quadratic has complex roots, so choose 1+(p+q)/q=0 as the better option.

This means p+2q=0 and p=-2q. Therefore x=(4q²-2q²+q²)/q=3q.

Finally r=-(p+q)=q.

Now substitute these values for p, r and x into each equation:

(-2q)(-2q)-4q²=0 is true

q(-2q)+2q²=0 is true

-2q²-q(-2q)=0 is true

There are many solutions because there is no unique value for q.

So q is arbitrary, and p=-2q, r=q and x=3q. So the matrix can be rewritten:

-5q q q
q -2q -2q
q -2q -2q

It can be easily seen that the determinant is zero. The common factor can be taken outside the matrix and the matrix simply becomes the coefficients -5, 1 and -2.


answered Mar 21 by Rod Top Rated User (524,900 points)

Related questions

0 answers
asked Jul 20, 2012 in Algebra 1 Answers by thinkofer (120 points) | 273 views
1 answer
asked Oct 31, 2014 in Algebra 1 Answers by anonymous | 115 views
Welcome to, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
80,738 questions
84,724 answers
68,309 users