If a,b & c are real numbers and (s-a) is not equal to 0, (s-b) is not equal to 0, (s-c) is not equal to 0,  & a+b+c = 2s prove that a/(s-a) +b/(s-b) +c/(s-c) + 2 = abc/(s-a)(s-b)(s-c)
in Pre-Algebra Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

a+b+c=2s, so c=2s-a-b and ac=2as-a^2-ab, bc=2bs-ab-b^2

2=2(s-a)(s-b)(s-c)/((s-a)(s-b)(s-c))=

(2(s-a)(s^2-s(b+c)+bc)/((s-a)(s-b)(s-c))=

2(s^3-s^2(a+b+c)+s(bc+ac+ab)-abc)/((s-a)(s-b)(s-c)).

Combine all the fractions. Just the numerators, because the denominator (s-a)(s-b)(s-c) is common:

a(s-b)(s-c)+b(s-a)(s-c)+c(s-a)(s-b)+2(s^3-s^2(a+b+c)+s(bc+ac+ab)-abc)=

as^2-a(b+c)s+abc + bs^2-b(a+c)+abc + cs^2-c(a+b)s+abc + 2(s^3-s^2(a+b+c)+s(bc+ac+ab)-abc=

2s^3+ (a+b+c)s^2 - 2(ab+ac+bc)s + 3abc

       -2(a+b+c)s^2 + 2(ab+ac+bc)s - 2abc=

2s^3 -(a+b+c)s^2                                abc = 2s^3-2s^3+abc, because a+b+c=2s.

That leaves abc as the numerator so the result is abc/((s-a)(s-b)(s-c)) QED

by Top Rated User (1.2m points)

Related questions

Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,388 users