define Pn as a set  containing all primes that the sum of  nconsecutive primes, that is Pn=[Pk belong to P such that Pk= the summaion from i=1 to n for pr+i-1, pr+i-1 ,...so on belong to P ,r belong to the set of nutural number] first prove that p1 =P. second find p2 and p4 explain why these are finite sets,hence prove whether the same applies for even value of n.third , find five element in each of the sets p3 and p5 explian  whether these should be finite or infinite sets?
related to an answer for: is the statment valid?
in Other Math Topics by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

The first few primes are 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 (P<50).

The sum of consecutive primes that are themselves are primes can be identified:

p1=1; p2=1+2=3; p4=1+2+3+5=11; p6=1+2+3+5+7+11=29; p8=1+2+3+5+7+11+13+17=59; p10=1+2+3+...+17+19+23+101, ...

My understanding of the questions is that P1={ p1 }; P2={ p1 p2 }; P3={ p1 p2 p4 }; P4={ p1 p2 p4 p6 }; P5={ p1 p2 p4 p6 p8 }; P6={ p1 p2 p4 p6 p8 p10 }. P2 and P4 are defined in this list. In Pn (P sub n), n defines the number of elements, and since n is a finite number (natural number belonging to N), the sets are finite by definition. In the sums p sub k it follows that k will be even (apart from p1) because, after 2, all primes are odd, adding another prime will automatically result in an even number, so a further prime must be added to get an odd number which may be prime. However, not all odd numbers obtained this way will necessarily be prime because not all odd numbers are prime.

What I'm not sure of is whether P3={ p1 p2 p4 } should in fact be defined as P4 because the highest pk is p4. If this is indeed the case then the list given earlier should define the sets for P1, P2, P4, P6, P8. P10 instead of P1, P2, P3,... Under this assumption, P4={ p1 p2 p4} while P2 is unaffected. However, the question suggests that P3 and P5 are definable. This takes us back to the original definition. P3 has only three elements under this definition: p1, p2, p4. If p1, p2 and p4 are themselves considered as sets of the primes comprising the sums, then, assuming duplicates are allowed, we have P3={ {1 } { 1 2 } { 1 2 3 5 } }. Five elements from these are, for example, { 1 1 1 2 2 } which also applies to P5.

 

by Top Rated User (1.2m points)

Related questions

1 answer
asked Oct 26, 2012 in Calculus Answers by anonymous | 526 views
1 answer
1 answer
asked Sep 20, 2013 in Algebra 1 Answers by anonymous | 671 views
1 answer
asked Jul 4, 2013 in Statistics Answers by anonymous | 1.7k views
0 answers
1 answer
asked Feb 24, 2014 in Algebra 2 Answers by L.B.Yadav | 804 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,345 users