I haven't seen this kind of separable ODE before, where do I start.
in Calculus Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

3 Answers

The equation can be written: (x^2+2x+1+9)dy/dx=(x+1)(2x^2-3x-1). This is: ((x+1)^2+9)dy/dx=(x+1)(2x^2-3x-1). Let x+1=3tan(a), so dx/da=3sec^2(a) and dy/da=dy/dx*dx/da. Replacing x+1 with 3tan(a), we have (9tan^2(a)+9)dy/dx=3tan(a)(2(3tan(a)-1)^2-3(3tan(a)-1)-1). So, since 3sec^2(a)dy/dx=dy/da, and 1+tan^2(a)=sec^2(a), we can write:

3dy/da=3tan(a)(18tan^2(a)-12tan(a)+2-9tan(a)+3-1). So dy/da=tan(a)(18tan^2(a)-21tan(a)+4). Expanding the right side we get dy/da=18tan^3(a)-21tan^2(a)+4tan(a). The expression on the right can be integrated, and it becomes more obvious when sec^2(a)=1+tan^2(a) is substituted. tan^3(a)=tan(a)(sec^2(a)-1), so integral(tan^3(a)da)=integral((tan(a)sec^2(a)-tan(a))da). Also tan^2(a)=sec^2(a)-1, so -21tan^2(a)=21-21sec^2(a), the integral wrt a of which is 21a-21tan(a).

Let z=tan(a), then dz=sec^2(a)da. So the first part of the integral becomes integral(zdz)=z^2/2=tan^2(a)/2. Now let z=cos(a), so dz=-sin(a)da. Integral(-tan(a)da) becomes integral(-da.sin(a)/cos(a))=integral(dz/z)=ln(z)=ln(cos(a)). The whole integral now becomes integral(18tan^3(a)-21tan^2(a)+4tan(a))

=9tan^2(a)+18ln(cos(a))+21a-21tan(a)-4ln(cos(a))=9tan^2(a)+14ln(cos(a))+21a-21tan(a). We now replace tan(a)=(x+1)/3 or a=tan^-1((x+1)/3). Here goes:

y=(x+1)^2+14ln(sqrt(x^2+2x+10)/3)+21tan^-1((x+1)/3)-7(x+1)+constant

or

y=(x+1)^2+7ln((x^2+2x+10)/9)+21tan^-1((x+1)/3)-7(x+1)+constant

 

by Top Rated User (1.2m points)
edited by

Given:(x²+2x+10)dy=(2x³-x²-4x+1)dx   x²+2x+10=(x+1/2)²+(39/4)>0, so we have:

dy/dx=(2x³-x²-4x+1/(x²+2x+10) ··· Eq.1

Let y=∫(dy/dx)dx=∫[(2x³-x²-4x+1)/(x²+2x+10)]dx ··· Eq.2   While,

2x³-x²-4x+1=(2x-5)(x²+2x+10)-7(2x+2)*+65, so Eq.1 can be rewritten:

dy/dx=(2x-5)-7(2x+2)/(x²+2x+10)+65/(x²+2x+10), so Eq.2 also can be rewritten:

y=∫(2x-5)dx-7∫[(2x+2)/(x²+2x+10)]dx+65∫[1/(x²+2x+10)]dx ··· Eq.3   use integration formula for Eq.3

(i). ∫[f'(x)/f(x)]dx=lnlf(x)l, so ∫[(2x+2)/(x²+2x+10)]dx=ln(x²+2x+10)+C1

(ii). In a quadratic equation ax²+bx+c=0, if the discriminant D=b²-4ac is negative(<0),

∫[1/(ax²+bx)]dx=(2/√-D)arctan[(2ax+b)/√-D]+C2.   Here, D=2²-4·1·10=-36<0, so

∫[1/(x²+2x+10)]dx=(2/√36)arctan[(2x+2)/√-36]=(1/3)arctan[(x+1)/3] +C3   Thus, Eq.3 can be rewritten:

y=x²-5x-7ln(x²+2x+10)+(65/3)arctan[(x+1)/3]+C ··· Eq.4

CK: Differentiate each term of Eq.4 using derivative rules such as (x^n)'=nx^(n-1), (ln x)'=1/x, (arctanx)'=1/(1+x²) and chainrules.

(x²-5x)'=2x-5, -7[ln(x²+2x+10)]'=-7[(2x+2)/(x²+2x+10)], and 65/3[arctan(x+1)/3]'=65/(x²+2x+10) So, the first derivative Eq.4 is:

y'=dy/dx=(2x-5)-7(2x+2)/(x²+2x+10)+65/(x²+2x+10)=[(2x+5)(x²+2x+10)-7(2x+2)+65}/(x²+2x+10)

=(2x³-x²-4x+1)/(x²+2x+10) (=Eq.1)   CKD.

The answer is: y=∫(dy/dx)dx=x²-5x-7ln(x²+2x+10)+(65/3)arctan(x+1)/3+C

by
edited

Given:(x²+2x+10)dy/dx=2x³-x²-4x+1   x²+2x+10=(x+1/2)²+(39/4)>0, so we have:

dy/dx=(2x³-x²-4x+1)/(x²+2x+10) ··· Eq.1

Let y=∫(dy/dx)dx=∫[(2x³-x²-4x+1)/(x²+2x+10)]dx ··· Eq.2   While,

2x³-x²-4x+1=(2x-5)(x²+2x+10)-7(2x+2)*+65, so Eq.1 can be rewritten:

dy/dx=(2x-5)-7(2x+2)/(x²+2x+10)+65/(x²+2x+10), so Eq.2 also can be rewritten:

y=∫(2x-5)dx-7∫[(2x+2)/(x²+2x+10)]dx+65∫[1/(x²+2x+10)]dx ··· Eq.3   Use formulas for Eq.3.

(i). ∫[f'(x)/f(x)]dx=lnf(x), so ∫[(2x+2)*/(x²+2x+10)]dx=ln(x²+2x+10)+C1

(ii). In a quadratic equation ax²+bx+c=0, if the discriminant D=b²-4a2xc is negative(<0), then

∫[1/(ax²+bx+c)]dx=(2/√-D)arctan[(2ax+b)/√-D]+C1   Here, D=2²-4·1·10=-36<0, so √-D=√36=6, and

∫[1/(x²+2x+10)dx=(1/3)arctan[(x+1)/3]+C3   Thus, Eq.3 can be rewritten:

y=x²-5x-7ln(x²+2x+10)+(65/3)arctan[(x+1)/3]+C ··· Eq.4

CK: Differentiate each term of Eq.4: (x²-5x)'=2x-5, -7[ln(x²+2x+10)]'=-7[(2x+2)/(x²+2x+10)], and

(65/3)[arctan(x+1)/3]'=65/(x²+2x+10)   So, the first derivative of Eq.4 is:

y'=dy/dx=(2x-5)-7(2x+2)/(x²+2x+10)+65/(x²+2x+10)=(2x³-x²-4x+1)/(x²2x+10)=Eq.1  CKD.

The answer: y=x²-5x-7ln(x²+2x+10)+(65/3)arctan[(x+1)/3]+C

by Level 2 User (1.3k points)

Related questions

1 answer
1 answer
16 answers
16 answers
39 answers
asked Nov 20, 2013 in Calculus Answers by anonymous | 7.0k views
24 answers
1 answer
asked Jul 6, 2019 in Other Math Topics by Divya | 2.6k views
1 answer
asked Aug 12, 2014 in Other Math Topics by Kiroro | 4.0k views
1 answer
asked Mar 11, 2016 in Calculus Answers by anonymous | 886 views
1 answer
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,415 users