Let (a+ib)2=i then a+ib=±√i, where a and b are both real.
a2+2abi-b2=i, so 2ab=1 and a2-b2=0 so a=±b.
(1) a=b: 2ab=1=2a2=1, b=a=±√2/2;
(2) a=-b: 2ab=1, 2a2=-1, which has no real solution, so we reject this, because a has to be real.
Therefore a=b=(i) √2/2 or (ii) -√2/2.
(i) a2+2abi-b2=½+i-½=i or (ii) ½+i-½=i.
(√2/2)(1+i)=√i.
(√i)√i=i½√i=i(√2/4)(1+i).
reiθ≡rcosθ+irsinθ, and we can write x=rcosθ and y=isinθ as Cartesian representation of the complex number, while r and θ represent the complex number in polar coordinates.
eniθ≡cos(nθ)+isin(nθ), so ln(eniθ)=niθ=ln(cos(nθ)+isin(nθ)); when n=1 and θ=½π, ½iπ=ln(i),
Cartesian (0,½π), polar (½π,½π).
ln(i(√2/4)(1+i))=(√2/4)(1+i)ln(i)=(√2/4)(1+i)(½iπ)=⅛π√2(-1+i).
i(√2/4)(1+i)=e⅛π√2(-1+i)=e-⅛π√2e⅛iπ√2=e-⅛π√2(cos(⅛π√2)+isin(⅛π√2),
polar coordinates (e-⅛π√2,⅛π√2), representing (√i)√i.
(Cartesian: (e-⅛π√2cos(⅛π√2),e-⅛π√2sin(⅛π√2))).
√i is represented by (√2/2,√2/2) in Cartesian coordinates and by (1,π/4) in polar coordinates.
i is represented by (0,1) in Cartesian coordinates and by (1,π/2) in polar coordinates.
1+i⇒(1,1) Cartesian⇒rcosθ=1 and rsinθ=1⇒θ=π/4 and r=√2, (√2,π/4) polar.
[ln(i)=½iπ, ln(ii)=iln(i)=-½π, eiln(i)=eln(i^i)=e-½π (a real number):
Cartesian and polar (e-½π,0).]