' represnt inverse
in Trigonometry Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

2 Answers

Question: prove cos(-1){(cosa+cosb)/(1+cosacosb)}=2tan^(-1){tana/2*tanb/2}

Let
cos^(-1)((cosa+cosb)/(1+cosa .cosb ))=s
Then
(cosa+cosb)/(1+cosa.cosb )=coss=(√(1+tan^2s ))^(-1)


Let
2 tan^(-1)(tan〖a/2〗. tan〖b/2〗)=t
Then
tan〖a/2〗. tan〖b/2〗= tan〖t/2〗


Using tan〖a/2〗. tan〖b/2〗= tan〖t/2〗 and the identity tan2A=(2 tanA)/(1-tan^2A ), then


1+ tan^2t=1+((2 tan〖t/2〗)/(1 - tan^2〖t/2〗))^2
=1+(4 tan^2〖t/2〗)/(1 - 2 tan^2〖t/2〗+ tan^4〖t/2〗)
=(1+2 tan^2〖t/2〗+ tan^4〖t/2〗)/(1 - 2 tan^2〖t/2〗+ tan^4〖t/2〗)
=(1+tan^2〖t/2〗)^2/(1 - tan^2〖t/2〗)^2

√(1+tan^2t)=(1+tan^2〖t/2〗)/(1 - tan^2〖t/2〗)
(√(1+tan^2t))^(-1)=(1 - tan^2〖t/2〗)/(1 + tan^2〖t/2〗)
(√(1+tan^2t))^(-1)=(1 - tan^2〖a/2〗.tan^2〖b/2〗)/(1 + tan^2〖a/2〗. tan^2⁡〖b/2〗)
(√(1+tan^2t ))^(-1)=(cos^2〖a/2〗. cos^2〖b/2〗- sin^2〖a/2〗. sin^2〖b/2〗)/(cos^2〖a/2〗. cos^2〖b/2〗+ sin^2〖a/2〗. sin^2〖b/2〗)

Using the identities


cos^2A=1/2 (1+cos2A )
sin^2A=1/2 (1-cos2A ),


(√(1+tan^2t ))^(-1)=((1+cosa )(1+cosb ) - (1-cosa )(1-cosb))/((1+cosa )(1+cosb ) + (1-cosa )(1-cosb))
=(1 + cosa + cosb + cosa.cosb - 1 + cosa + cosb - cosa.cosb)/(1 + cosa + cosb + cosa.cosb + 1 - cosa - cosb + cosa.cosb )
=2(cosa + cosb)/(2 + 2.cosa.cosb )
(√(1+tan^2t ))^(-1)=(cosa + cosb)/(1 + cosa.cosb )
(s=t)


Hence,

cos^(-1)((cosa + cosb)/(1 + cosa.cosb )) = 2 tan^(-1)(tan〖a/2〗. tan〖b/2〗)

by Level 11 User (81.5k points)
edited by
is their any other method to do this question in easy manner
Yes. See my solution.

Let x=cos⁻¹((cos(a)+cos(b))/(1+cos(a)cos(b)), then cos(x)=(cos(a)+cos(b))/(1+cos(a)cos(b).

sin(x)=sin(a)sin(b)/(1+cos(a)cos(b)). See below for explanation.

[sin(x)=√(1-cos²(x))=

√(1+2cos(a)cos(b)+cos²(a)cos²(b)-cos²(a)-2cos(a)cos(b)-cos²(b))/(1+cos(a)cos(b))=

√(1-cos²(a)(1-cos²(b))-cos²(b))/(1+cos(a)cos(b))=

√(1-cos²(a)sin²(b)-1+sin²(b))/(1+cos(a)cos(b))=sin(a)sin(b)/(1+cos(a)cos(b)).]

tan(x)=sin(a)sin(b)/(cos(a)+cos(b)).

Let y=2tan⁻¹(tan(a/2)tan(b/2)), so tan(y/2)=tan(a/2)tan(b/2).

But tan(a/2)≡(1-cos(a))/sin(a) [because 1-cos(a)=2sin²(a/2) and sin(a)=2sin(a/2)cos(a/2)]

and tan(b/2)≡(1-cos(b))/sin(b). These are trig identities.

Therefore tan(y/2)=(1-cos(a))(1-cos(b))/(sin(a)sin(b))=

(1+cos(a)cos(b)-cos(a)-cos(b))/(sin(a)sin(b))=

(1+cos(a)cos(b))/(sin(a)sin(b))-(cos(a)+cos(b))/(sin(a)sin(b))=

1/sin(x)-1/tan(x)=(1-cos(x))/sin(x))≡tan(x/2).

Thus tan(y/2)=tan(x/2), y/2=x/2, making x=y. Therefore,

cos⁻¹((cos(a)+cos(b))/(1+cos(a)cos(b))=2tan⁻¹(tan(a/2)tan(b/2)) QED

by Top Rated User (1.2m points)

Alternative solution:

 

To prove:

arccos{(cos(a)+cos(b))/(1+cos(a)cos(b))}=

2arctan{tan(a/2)tan(b/2)}.

Let cos(A)=(cos(a)+cos(b))/(1+cos(a)cos(b)).

Let tan(B)=tan(a/2)tan(b/2).

So essentially we need to prove A=2B.

Let t=tan(θ/2), so we can expand the trig identity:

tan(θ)=2t/(1-t²), so t²tan(θ)+2t-tan(θ)=0.

So, t²+2tcot(θ)=1.

Completing the square:

t²+2tcot(θ)+cot²(θ)=1+cot²(θ)=csc²(θ).

(t+cot(θ))²=csc²(θ), t=±csc(θ)-cot(θ).

So tan(θ/2)=(±1-cos(θ))/sin(θ).

If we keep θ positive, tan(θ/2)=(1-cos(θ))/sin(θ).

So tan(a/2)=(1-cos(a))/sin(a) and tan(b/2)=(1-cos(b))/sin(b).

tan(a/2)tan(b/2)=((1-cos(a))/sin(a))((1-cos(b))/sin(b)).

sin(a)sin(b)=½(cos(a-b)-cos(a+b)),

cos(a)cos(b)=½(cos(a-b)+cos(a+b)).

If A=2B, then secA=sec(2B).

secA=(1+cos(a)cos(b))/(cos(a)+cos(b)).

tan(2B)=2tanB/(1-tan²B)=2tan(a/2)tan(b/2)/(1-tan²(a/2)tan²(b/2)).

2tanB=2tan(a/2)tan(b/2)=2(1-cos(a))(1-cos(b))/(sin(a)sin(b)).

tan²B=tan²(a/2)tan²(b/2)=(1-cos(a))²(1-cos(b))²/((1-cos²(a))(1-cos²(b)).

tan²B=((1-cos(a))(1-cos(b)))/((1+cos(a))(1+cos(b))).

1-tan²B=((1+cos(a))(1+cos(b))-(1-cos(a))(1-cos(b)))/((1+cos(a))(1+cos(b)))=

2(cos(a)+cos(b))/((1+cos(a))(1+cos(b))).

tan(2B)=sin(a)sin(b)/(cos(a)+cos(b)).

sec²(2B)=1+tan²(2B)=((cos(a)+cos(b))²+sin²(a)sin²(b))/(cos(a)+cos(b))².

Replace sin²(a) with 1-cos²(a) and sin²(b) with 1-cos²(b):

(cos(a)+cos(b))²+(1-cos²(a))(1-cos²(b))=

cos²(a)+2cos(a)cos(b)+cos²(b)+1-cos²(a)-cos²(b)+cos²(a)cos²(b)=(1+cos(a)cos(b))².

sec²(2B)=(1+cos(a)cos(b))²/(cos(a)+cos(b))².

sec(2B)=(1+cos(a)cos(b))/(cos(a)+cos(b))=secA. QED

 

 

Related questions

1 answer
1 answer
asked Nov 18, 2013 in Trigonometry Answers by Aarush Level 1 User (160 points) | 8.4k views
1 answer
asked Mar 17, 2023 in Trigonometry Answers by OT | 365 views
1 answer
1 answer
1 answer
asked Jun 1, 2013 in Trigonometry Answers by anonymous | 582 views
2 answers
1 answer
1 answer
asked Jan 28, 2014 in Trigonometry Answers by alokghimire Level 4 User (6.4k points) | 642 views
1 answer
1 answer
asked Sep 25, 2016 in Trigonometry Answers by TanA=sinA\cosA | 654 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,171 users