sinh(x)=½(ex-e-x) and cosh(x)=½(ex+e-x) by definition of hyperbolic functions.
sinh2(x)=¼(e2x-2+e-2x) and cosh2(x)=¼(e2x+2+e-2x).
Therefore cosh2(x)-sinh2(x)=¼(e2x+2+e-2x-e2x+2-e-2x)=4/4=1.
Hence cosh2(x)=1+sinh2(x), cosh(x)=√(1+sinh2(x)).
Other hyperbolic identities follow by replacing the hyperbolic functions with their definitions.
For example, 2sinh2(x)=½(e2x+e-2x-2)=½(e2x+e-2x)-1=cosh(2x)-1, so:
cosh(2x)=1+2sinh2(x).