3(2n+4)!/(2n+1)!=3(2n+4)(2n+3)(2n+2)(2n+1)!/(2n+1)!=3(2n+4)(2n+3)(2n+2);
2(n+4)!/n!=2(n+4)(n+3)(n+2)(n+1).
Therefore:
3(2n+4)(2n+3)(2n+2)=2(n+4)(n+3)(n+2)(n+1),
3[2(n+2)](2n+3)[2(n+1)]=2(n+4)(n+3)(n+2)(n+1),
12(2n+3)=2(n2+7n+12),
6(2n+3)=n2+7n+12,
12n+18=n2+7n+12,
n2-5n-6=(n+1)(n-6)=0 so n=-1 or 6. Consider n=6 only then check:
3(16!)/13!=3×16×15×14; 2(10!)/6!=2×10×9×8×7.
3×2×15×2=2×10×9, 180=180✔️