If a and b are both positive then |a|-|b|=a-b, making ||a|-|b||=|a-b|.
Let a=-m2 and b=n2, then a-b=-m2-n2=-(m2+n2) and |a-b|=m2+n2.
|a|=m2, |b|=n2, so |a|-|b|=m2-n2 and |m2-n2|<m2+n2, (difference is less than the sum), therefore:
||a|-|b||<|a-b|.
Let a=m2 and b=-n2, then a-b=m2+n2;
|a|-|b|=m2-n2, |m2-n2|<m2+n2, and ||a|-|b||<|a-b|.
Let a=-m2 and b=-n2, a-b=-m2+n2, |a|=m2, |b|=n2;
||a|-|b||=|m2-n2|, |a-b|=|-m2+n2|.
These two quantities have the same value so ||a|-|b||=|a-b|.
Therefore for all a, b ||a|-|b||≤|a-b|.