y=x^2 and y=x+6

My teacher didn't really explain how to do these so anyone please help i've gone completely blank and my head is throubing! And if you could also answer these simulaenous equations also using a graphical method - you have to determine if they have no solution or not:

a. y=2x - 4 and 3y-6x=10

b.3y+2x=9 and 6x+4y=22
in Algebra 1 Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Plot y=x^2 and y=x+6 on the same graph. The first is a U-shaped curve sitting on the origin (0,0), the second is a straight line crossing the x axis (y=0) at x=-6 and crossing the y axis (x=0) at y=6. Where the line cuts through the U curve represents the solution to the equation x^2-x-6=0 (x^2=x+6). The solution to this quadratic is x=-2, +3. The intersection points are therefore (-2, 4) and (3, 9).

The remaing part of your question involves straight lines only, linear equations. For (a) draw a straight line joining y=-4 on the y axis to x=2 on the x axis. Also draw a line joining y=3 1/3 to x=-1 2/3. These points on the axes are where x=0 and y=0 for the two functions. The lines don't stop at the axes, so just continue them after they cut the axes. What may have been confusing to you is that the first equation starts y=..., but the second equation has x and y together in an expression. However, you can move things around in an equation and, if you want, you can make the equation look like y=... or x=... or just combine x and y in an expression. It doesn't matter. What you'll find is that the lines are parallel (have the same slope) so that means they never cross and that means there's no solution.

In (b) the two lines have different slopes so we would expect them to intersect. The first equation means joining (0,3) to (9/2,0) and (0,11/2) to (11/3,0). Again, extend the lines to beyond where they cut the axes. Note that the second equation simplifies to 3x+2y=11. The solution to the equations solved simultaneously or by substitution give a single intersection point at (3,1).

by Top Rated User (1.2m points)
edited by

Related questions

1 answer
0 answers
1 answer
1 answer
asked Mar 7, 2015 in Calculus Answers by anonymous | 1.6k views
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,308 answers
2,420 comments
750,335 users