provide me the answer
in Word Problem Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Assumption 1: The following logic assumes that O is an odd digit and E is an even digit, and they always represent the same digit wherever they appear in a calculation.

OEO×OE can be broken down into two multiplications and a sum.

OE=OZ+E so OEO(OZ+E)=OEO(O0+E).

Rules:

odd×odd=odd; odd×even=even×odd=even; even×even=even;

odd+odd=even; odd+even=even+odd=odd; even+even=even.

OEO×O=O×O+10(O×E)+100(O×O).

O×O=xO, where x could be even, odd or zero.

If O=1 or 3, x=0 because O×O=1 or 9.

If O=5, x=2, because O×O=25.

If O=7, x=4.

If O=9, x=8.

Therefore, O×O=O or EO, and 100(O×O)=OZZ or EOZZ.

O×E={ (1×2=2) (1×4=4) (1×6=6) (1×8=8) (3×2=6) (3×4=12) (3×6=18) (3×8=24)

           (5×2=10) (5×4=20) (5×6=30) (5×8=40) (7×2=14) (7×4=28) (7×6=42) (7×8=56)

           (9×2=18) (9×4=36) (9×6=54) (9×8=72) }

Therefore O×E=E⇒O=1; O×E=OZ⇒O=5. In no cases is E reproduced in any product. So O=1 or 5. E can be any even digit. The carryover can only be 1, 2, 3 or 4. Since O can only be 1 or 5, all other values can be eliminated. So we can write 1E1×1E or 5E5×5E as the arithmetic expression.

E can only be 2, 4, 6, 8 so there are 8 possible expressions:

121×12=1452, 141×14=1974, 161×16=2576, 181×18=3258, 525×52=27300, 545×54=29430, 565×56=31640, 585×58=33930.

None of these 5-digit solutions produce OOZOE (1101E or 5505E), so the original assumptions are incorrect, and we now have to assume that O is any odd number and E any even number, Z continuing to represent 0, of course. The important conclusion is that the product must have zero hundreds.

Having eliminated assumption 1, we can now turn to assumption 2: O represents any odd digit, E any even digit apart from zero, Z=0.

There are many solutions in this case. We can work through all 20 combinations of 2-digit OEs:

12, 14, 16, 18, 32, 34, 36, 38, 52, 54, 56, 58, 72, 74, 76, 78, 92, 94, 96, 98. These are all possible multipliers.

The 5-digit product limits it to between 11012 and 99098 (pattern has to be OOZOE). Also the multiplicand must be only 3 digits long: between 121 and 989.

If the multiplier is 12 then the multiplicand is between 917 and 989, because 12×917=11004 and 12×989=11868. The product must conform to OOZOE between 11004 and 11868.

For other multipliers the range of values for the multiplicand and product will shift. The table below is based on these constraints.

Here are at least some solutions:

OEO (multiplicand) OE (multiplier) OOZOE (product)

             921                       12                  11052

             923                       12                  11076

             787                       14                  11018

             941                       16                  15056

             723                       18                  13014

             343                       38                  13034

             923                       38                  35074

             981                       52                  51012

             947                       56                  53032

             983                       58                  57014

             181                       72                  13032

             987                       74                  73038

             961                       76                  73036

             987                       76                  75012

             381                       92                  35052

             181                       94                  17014

             761                       96                  73056

             521                       98                  51058

             541                       98                  53018

The method is best illustrated by example.

  1. Pick a potential OE from the list of 20. In this example I've picked 38.
  2. Multiply by 989 (the highest possible OEO)=37582.
  3. This doesn't conform to the pattern OOZOE, so find the nearest lower OOZOE candidate: 5 must be reduced to 0, OE=98 as the highest combination, so we get 37098.
  4. Integer part of 37098/38=976. 
  5. This doesn't conform to the pattern OEO, so find the nearest lower candidate: 7 must be reduced to 6 and 6 changed to 9=969.
  6. 969×38=36822. Nearest OOZOE is 35098 (see step 3).
  7. Integer 35098/38=923.
  8. This conforms to OEO, hence 923×38=35074 is a solution (see table).
  9. Subtract 76 (that is, 2×38): 34998. This is the next product to work with.
  10. Nearest OOZOE to 34998=33098 (see step 3).
  11. 33098/38=871→789 (see steps 4 and 5).
  12. 789×38=29982→19098; integer 19098/38=502→389; 389×38=14782→13098; integer 13098/38=344→343; 343×38=13034. Hence another solution.

Searching stops when the 5-digit product reaches 11012 or lower. Continuing with this method produced no more solutions using 38. Work through the list to find more solutions using different OEs.

by Top Rated User (1.2m points)

Related questions

1 answer
asked Jul 11, 2021 by BadWithNumbers Level 1 User (120 points) | 740 views
1 answer
asked Oct 4, 2013 in Word Problem Answers by anonymous | 705 views
1 answer
asked Nov 18, 2011 in order of operations by anonymous | 1.6k views
1 answer
asked Dec 8, 2017 in Algebra 2 Answers by anonymous | 456 views
1 answer
asked May 20, 2014 in Calculus Answers by anonymous | 594 views
1 answer
asked Oct 17, 2013 in Other Math Topics by anonymous | 617 views
2 answers
4 answers
asked Sep 3, 2012 in Trigonometry Answers by MathsNinja Level 2 User (1.1k points) | 1.5k views
1 answer
asked Aug 5, 2012 in Statistics Answers by anonymous | 1.5k views
1 answer
1 answer
2 answers
asked Jan 3, 2012 in Algebra 1 Answers by anonymous | 1.1k views
4 answers
asked Dec 27, 2011 in Algebra 1 Answers by anonymous | 1.4k views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,314 answers
2,420 comments
751,771 users