1. tan x+ cot x=2 csc 2 x

2.  cos ^4 x-sin^4x= cos2x

3. 1/2( 1-cos4 x)+ cos^2 2x=1

4.  (sin 3x/sin x) -( cos 3x/cosx) =2

5. (sinx cos^2x )/1-sinx - sin x= sin^2x

6. (cos^2 x+sin x )/ 1-sin x= 1+ 2 sinx

7. ( sec x-tan x) ^2= 2(1-sin x) ^2/ 1 +cos2x

8. -In (sec x-tanx) =In (sec x + tan x)

9. 2 sin x cos^2 (x/2) - (1/ 2) sin( 2x)= sin x

10. (1-cosx)/sin x= sinx / (1 + cos x)

11. sin x -( cos x/ 1+ sin x)= tan x

12. 2 /( sin x + 1 )- 2 /( sin x - 1)= 4 sec ^2 x

13. sec ^ 2 x + csc ^ 2 x = sec ^ 2x x csc ^ 2x

14. (sec x +1) / tan x = tan x / (sec x -1)

 

 I needed your answer on any of the numbers. I found this in the book and until now, I only got 6  out  of 20 . And this 14  no. are the numbers I never prove. Thanks a lot for your answers. God bless.
 

 

in Trigonometry Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

1. tan x+ cot x=2 csc 2 x

sin(x)/cos(x)+cos(x)/sin(x)=(sin2(x)+cos2(x))/sin(x)cos(x).

sin2(x)+cos2(x)=1 (for all x); sin(2x)=2sin(x)cos(x), so sin(x)cos(x)=½sin(2x); therefore tan x+ cot x=2/sin(2x)=2csc(2x) QED.

2.  cos ^4 x-sin^4x= cos2x

(cos2(x)+sin2(x))(cos2(x)-sin2(x));

cos(2x)=cos2(x)-sin2(x) (for all x),

therefore cos4(x)-sin4(x)=cos(2x) QED.

3. 1/2( 1-cos4 x)+ cos^2 2x=1

cos(4x)=2cos2(2x)-1 (for all x); 1-cos(4x)=2-2cos2(2x);

therefore ½(1-cos(4x))=1-cos2(2x) and

1-cos2(2x)+cos2(2x)=1 QED.

4.  (sin 3x/sin x) -( cos 3x/cosx) =2

sin(3x)=sin(2x+x)=sin(2x)cos(x)+cos(2x)sin(x)=

2sin(x)cos2(x)+cos(2x)sin(x);

sin(3x)/sin(x)=2cos2(x)+cos(2x);

cos(3x)=cos(2x)cos(x)-sin(2x)sin(x)=

cos(2x)cos(x)-2sin2(x)cos(x);

cos(3x)/cos(x)=cos(2x)-2sin2(x);

sin(3x)/sin(x)-cos(3x)/cos(x)=

2cos2(x)+cos(2x)-(cos(2x)-2sin2(x))=

2(sin2(x)+cos2(x))=2 QED.


5. (sinx cos^2x )/1-sinx - sin x= sin^2x

sin(x)[cos2(x)/(1-sin(x))-1]=

sin(x)[cos2(x)-1+sin(x)]/(1-sin(x))=

sin(x)[-sin2(x)+sin(x)]/(1-sin(x))=

sin2(x)[-sin(x)+1]/(1-sin(x))=sin2(x)[1-sin(x)]/(1-sin(x))=sin2(x) QED.

6. (cos^2 x+sin x )/ 1-sin x= 1+ 2 sinx⇒

cos2(x)+sin(x)=(1-sin(x))(1+2sin(x))=1+sin(x)-2sin2(x)⇒

cos2(x)=1-2sin2(x) which is false, so the proposed identity is false.

However cos(2x)=1-2sin2(x) so:

(cos(2x)+sin(x))/(1-sin(x))=1+2sin(x) is a correct identity.


7. ( sec x-tan x) ^2= 2(1-sin x) ^2/ 1 +cos2x

1+cos(2x)=1+2cos2(x)-1=2cos2(x), so RHS=(1-sin(x))2/cos2(x);

sec(x)-tan(x)=1/cos(x)-sin(x)/cos(x)=(1-sin(x))/cos(x); therefore LHS=(1-sin(x))2/cos2(x)=RHS QED

8. -In (sec x-tanx) =In (sec x + tan x)⇒

ln(sec(x)+tan(x))+ln(sec(x)-(tan(x))=0⇒

ln(sec2(x)-tan2(x))=ln(1+tan2(x)-tan2(x))=ln(1)=0, therefore:

-ln(sec(x)-(tan(x))=ln(sec(x)+tan(x)) QED.

9. 2 sin x cos^2 (x/2) - (1/ 2) sin( 2x)= sin x

sin(2x)=2sin(x)cos(x) (for all x); sin(x)=2sin(x/2)cos(x/2), cos(x)=2cos2(x/2)-1 (for all x), therefore:

2sin(x)cos2(x/2)-sin(x)cos(x)=sin(x)(2cos2(x/2)-cos(x))=sin(x)(1+cos(x)-cos(x))=sin(x) QED.


10. (1-cosx)/sin x= sinx / (1 + cos x)⇒

(1-cos(x))(1+cos(x))=sin2(x), 1-cos2(x)=sin2(x) which is true for all x, therefore the proposed identity is true.

11. sin x -( cos x/ 1+ sin x)= tan x is not true for all x. For example, if x=0 this becomes:

0-1=0, -1=0 which is not true. However:

y-cos(x)/(1+sin(x))=y-cos(x)(1-sin(x))/(1-sin2(x))=

y-cos(x)(1-sin(x))/cos2(x)=y-(1-sin(x))/cos(x)=y-(sec(x)-tan(x)).

If y=sec(x) then y-cos(x)/(1+sin(x))=tan(x) and:

sec(x)-(cos(x)/(1+sin(x))=tan(x) is a true identity, true for all x.


12. 2 /( sin x + 1 )- 2 /( sin x - 1)= 4 sec ^2 x

2(sin(x)-1-(sin(x)+1)/(sin2(x)-1)=2(-2)/(-cos2(x))=4sec2(x) QED.



13. sec ^ 2 x + csc ^ 2 x = sec ^ 2x x csc ^ 2x

1/cos2(x)+1/sin2(x)=(sin2(x)+cos2(x))/(sin2(x)cos2(x))=

1/(sin2(x)cos2(x))=sec2(x)csc2(x) QED

14. (sec x +1) / tan x = tan x / (sec x -1)⇒

(sec(x)+1)(sec(x)-1)=tan2(x),

sec2(x)-1=tan2(x), or sec2(x)=1+tan2(x) which is true for all x and follows from:

sin2(x)+cos2(x)=1⇒sin2(x)/cos2(x)+1=sec2(x), that is, tan2(x)+1=sec2(x). So the proposition is true.

by Top Rated User (1.2m points)

Related questions

1 answer
asked Mar 17, 2013 in Trigonometry Answers by Amy Level 1 User (180 points) | 850 views
1 answer
asked Mar 17, 2013 in Trigonometry Answers by Amy Level 1 User (180 points) | 1.2k views
1 answer
1 answer
1 answer
1 answer
asked Jun 9, 2013 in Trigonometry Answers by anonymous | 676 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,474 users