The correct solution must take into account the coefficient of g2.
You can use the quadratic formula: g=(29±√(292-4×4×48))/8,
g=(29±√(841-768))/8=(29±√73)/8=(29+√73)/8=4.693 and (29-√73)/8=2.557 approx.
Approximate factorisation is 4(g-4.693)(g-2.557)
4×4.693×2.557=48 (approx); 4(4.693+2.557)=29.