Split into partial fractions:
(4s+5)/[(s-1)2(s+2)]=A/(s-1)+B/(s-1)2+C/(s+2).
So, A(s-1)(s+2)+B(s+2)+C(s-1)2=4s+5,
As2+As-2A+Bs+2B+Cs2-2Cs+C=4s+5. Match coefficients:
A+C=0, C=-A;
A+B-2C=4, A+B+2A=4, 3A+B=4, B=4-3A;
-2A+2B+C=5, -2A+8-6A-A=5, 9A=3, A=⅓⇒B=3, C=-⅓.
(4s+5)/[(s-1)2(s+2)]=⅓(1/(s-1))+3/(s-1)2-⅓(1/(s+2)).
Apply inverse Laplace to each term:
⅓et+3tet-⅓e-2t