We can use the Cosine Rule to find an angle:
Let a=5, b=16, c=12 then a2=b2+c2-2bccosA,
cosA=(b2+c2-a2)/(2bc)=(256+144-25)/(384)=375/384=125/128=0.9765625, A=12.4293° approx.
Area of triangle=½bcsinA=96×0.2152=20.66 square units or 96√(1-cos2A).
As a formula we could have written:
Area=½bc√(1-(b2+c2-a2)2/(4b2c2))=¼√(4b2c2-(b2+c2-a2)2).