a2+b=29 and a+b2=21.
Also, (a2+b)-(a+b2)=29-21=8,
a2-b2-(a-b)=8,
(a-b)(a+b)-(a-b)=8,
(a-b)(a+b-1)=8, and 8=1×8=2×4.
If a+b-1=8, so a+b=9 and a-b=1, 2a=10, so a=5 (b=4); a2+b=25+4=29✔️ a+b2=5+16=21✔️
If a+b-1=4, so a+b=5 and a-b=2, 2a=7, so a=7/2 (b=3/2); a2+b=49/4+3/2=55/4≠29❌ a+b2=7/2+9/4=23/4≠21❌
If a+b-1=-1, so b=-a and a-b=-8, 2a=-8 and a=-4 (b=4); a2+b=20≠29❌ a+b2=-4+16=12≠21❌
If a+b-1=-1, so b=-a and a-b=-8, 2a=-8 and a=-4 (b=4); a2+b=20≠29❌ a+b2=-4+16=12≠21❌
None of the other integer combinations work.
So one answer appears to be a=5. However, there may be more solutions, not necessarily integers.
Now let's try a different method:
b=29-a2; a+(29-a2)2=21, a+841-58a2+a4=21,
a4-58a2+a+820=0. We know one solution is a=5 so we can divide by this solution:
5 | 1 0 -58 1 820
1 5 25 -165 | -820
1 5 -33 -164 | 0 =a3+5a2-33a-164, which has 3 irrational solutions:
a=-5.8465, -4.8900, 5.7365 (approx).
a=5 is probably the expected solution.