cos(2x)=cos2(x)-sin2(x) is a basic identity.
1-tan2(x)=1-sin2(x)/cos2(x)=(cos2(x)-sin2(x))/cos2(x)=cos(2x)/cos2(x).
sin2(x)+cos2(x)=1, so sin2(x)/cos2(x)+1=1+tan2(x)=1/cos2(x).
(1-tan2(x))/(1+tan2(x))=cos(2x)/cos2(x)/(1/cos2(x))=cos(2x)(cos2(x)/cos2(x))=cos(2x) QED.