(D²-3D+2)y=1/(1+e^x)
in Calculus Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

We have y=y₁+y₂ where the whole solution y is split into two parts: y₁ is the auxiliary, characteristic or complementary component, and y₂ is the particular solution.

We treat D as a variable in the quadratic D²-3D+2=0, so (D-1)(D-2)=0. This tells us that y₁=C₁e^x+C₂e^2x.

From this let Y₁=e^x and Y₂=e^2x. We use these to build y₂=u₁Y₁+u₂Y₂ where u₁ and u₂ are functions of x that have to be found. Now we need to work out some Wronskian determinants: W, W₁ and W₂ defined as:

W=Y₁Y₂'-Y₂Y₁'=(e^x)(2e^2x)-(e^2x)(e^x)=2e^3x-e^3x=e^3x.

W₁=(0)Y₂'-(1/(1+e^x))Y₂=-e^2x/(1+e^x).

W₂=Y₁(1/(1+e^x))-(0)Y₁'=e^x/(1+e^x).

u₁'=W₁/W=-e^-x/(1+e^x), u₂'=W₂/W=e^-2x/(1+e^x).

u₁=∫-e^-x/(1+e^x)dx=

∫(e^-x)(-e^-xdx)/(1+e^-x) and

u₂=∫e^-2x/(1+e^x)dx=

-∫(e^-2x)(-e^-xdx)/(1+e^-x).

Let z=1+e^-x then e^-x=z-1 and dz=-e^-xdx.

So u₁=∫(z-1)dz/z=∫(1-1/z)dz=z-ln(z)=1+e^-x-ln(1+e^-x). 

Y₁u₁=e^x+1-e^xln(1+e^-x).

u₂=-∫((z-1)²/z)dz=

-∫(z-2+1/z)dz=-z²/2+2z-ln(z)=

-(1+2e^-x+e^-2x)/2+2(1+e^-x)-ln(1+e^-x),

u₂=-½-e^-x-e^-2x+2+2e^-x-ln(1+e^-x)=

3/2+e^-x-e^-2x-ln(1+e^-x).

Y₂u₂=3e^2x+e^x-1-e^2xln(1+e^-x).

Therefore y₂=e^x+1-e^xln(1+e^-x)+3e^2x+e^x-1-e^2xln(1+e^-x).

y₂=2e^x-e^xln(1+e^-x)+3e^2x-e^2xln(1+e^-x).

y=C₁e^x+C₂e^2x+2e^x-e^xln(1+e^-x)+3e^2x-e^2xln(1+e^-x).

Constants can be combined:

y=c₁e^x+c₂e^2x-e^xln(1+e^-x)-e^2xln(1+e^-x).

y=c₁e^x+c₂e^2x+e^xln(e^x/(1+e^x))+e^2xln(e^x/(1+e^x)).

y=c₁e^x+c₂e^2x-xe^xln(1+e^x)-xe^2xln(1+e^x).

by Top Rated User (1.2m points)

Related questions

1 answer
asked Apr 15, 2013 in Geometry Answers by Maruf Rahman Level 1 User (480 points) | 657 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,335 users