In right triangle ABC where ∠B=90°, AC2=AB2+BC2 (Pythagoras), which can be written b2=c2+a2, where a=length of BC, b=length of AC and c=length of AB.
sin(CÂB)=a/b; cos(CÂB)=c/b; sin2(CÂB)=a2/b2; cos2(CÂB)=c2/b2;
sin2(CÂB)+cos2(CÂB)=(a2+c2)/b2=b2/b2=1.
Let x=CÂB, then sin2(x)+cos2(x)=1, and sin2(x)=1-cos2(x).
cos2(x)-sin2(x)=cos2(x)-(1-cos2(x))=cos2(x)-1+cos2(x)=2cos2(x)-1.