(1) x,y≥0: |x|=x and |y|=y so ||x|-|y||=|x-y|
(2) x≥0, y<0, let y=-z2: |x|=x and |y|=z2 so ||x|-|y||=|x-z2|; |x-y|=|x+z2|.
But x+z2>x-z2, because z2>-z2, therefore ||x|-|y||<|x-y|.
(3) x<0, let x=-z2, y≥0: |x|=z2 and |y|=y so ||x|-|y||=|z2-y|; |x-y|=|-z2-y|=z2+y.
But z2-y<z2, so |z2-y|<z2. z2+y>z2, therefore ||x|-|y||<|x-y|.
(4) x<0, let x=-w2, y<0, let y=-z2: |x|=w2 and |y|=z2 so ||x|-|y||=|w2-z2|; |x-y|=|-w2+z2|=|w2-z2|.
But w2+z2>z2-w2, w2>-w2, therefore ||x|-|y||=|x-y|.
EXAMPLES
(a) x=1, y=2: ||x|-|y||=|1-2|=1; |x-y|=|1-2|=1, ||x|-|y||=|x-y|.
(b) x=1, y=-1: ||x|-|y||=|1-1|=0; |x-y|=|1+1|=2; 0<2 so ||x|-|y||<|x-y|.
(c) x=-1, y=1: ||x|-|y||=|1-1|=0; |x-y|=|-1-1|=2; 0<2 so ||x|-|y||<|x-y|.
(d) x=-2, y=-1: ||x|-|y||=|2-1|=1; |x-y|=|-2+1|=1; ||x|-|y||=|x-y|.
PROOF THAT ||x|-|y||≤|x-y|, NOT ||x|-|y||≥|x-y|.