The derivative of xln(x).
x=eln(x) so xln(x)=(eln(x))ln(x)=eln²(x).
(d/dx)(eln²(x))=
eln²(x)(d/dx)(ln2(x))=
eln²(x)2ln(x)(1/x)=
2ln(x)eln²(x)/x=2ln(x)xln(x)/x.
Let's break this down into steps. Let u=ln(x), then du/dx=1/x.
If y=xln(x), then, since x=eln(x), y=(eln(x))ln(x)=(eu)u=eu².
Let v=u2, then dv/du=2u, and y=ev.
dy/du=(dy/dv)(dv/du)=ev(2u)=2ueu².
dy/dx=(dy/du)(du/dx)=(2ueu²)/x=2ln(x)y/x=2ln(x)xln(x)/x.