cot7(x)=cos7(x)/sin7(x)=cos6(x).cos(x)/sin7(x).
cos6(x)=(1-sin2(x))3=1-3sin2(x)+3sin4(x)-sin6(x).
Let s=sin(x) then ds=cos(x)dx.
∫cot7(x)dx=∫(1-3s2+3s4-s6)/s7)ds=∫(s-7-3s-5+3s-3-1/s)ds,
∫cot7(x)dx=-s-6/6+3s-4/4-3s-2/2+ln(s)+C where C is a constant.
∫cot7(x)dx=-⅙csc6(x)+¾csc4(x)-(3/2)csc2(x)+ln(sin(x))+C.