x+y+z=2

2x-y+5z= -5

-x-2y+2z=1
in Algebra 1 Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

2 Answers

x+y+z=2, 2x-y+5z=-5,-x-2y+2z=1

x+y+z=2 <= eq1

2x-y+5z= -5 <= eq2

-x-2y+2z=1
<= eq3
 
eq1 + eq2
  x + y + z = 2 add to  2x - y + 5z = - 5
 
 3x + 6z = - 3
 x + 2z = -1 <= eq4
 
eq1 + eq3
   x + y + z = 2 add to  - x - 2y + 2z = 1
 y + 3z = 3 <= eq5
 
in eq4 : x = - 1 - 2z <= 6
 
eq6 subtitute to eq3
 
- x -2y+2z = 1 <= eq3
-(-1 - 2z) - 2y + 2z = 1
1 + 2z - 2y + 2z = 1
- 2y + 4z = 0
4z = 2y
2z = y 
 
z = y/2 < eq7
 
eq7 in eq5
 y + 3z = 3 <= eq5
 y + 3(y/2) = 3
2y + 3y = 3(2)
5y = 6
 
y = 6/5
 
y in eq2
2x-y+5z= -5 <= eq2
2x - (6/5) + 5z = - 5
2x - (6/5) + 5z + 5 = 0
10x - 6 + 5(5)z + 5(5) = 0
10x + 25z +25  - 6 = 0
10x + 25z = -19 <eq8
 
x + 2z = -1  <= eq4
x = - 2z - 1 <= x into eq8
 
10(-2z - 1) + 25z = -19
- 20z + 10 + 25z = -19
+ 10 + 5z = -19
5z = - 19 - 10
5z = - 29
 
z = -29/5
 
What we have computed  y = 6/5; z = -29/5 enter into eq1
 
x+y+z=2 <= eq1
x + (6/5) + (-29/5) = 2
x + (6/5) + (-29/5) - 2  = 0
[(5)x + 6 - 29 -(5)2] = 0
5x + 6 - 29 - 10 = 0
5x - 33 = 0
5x = 33
 
x = 33/5
 
Summary:   x = 33/5 : y = 6/5: z = -29/5 ◄ Ans
 
by Level 3 User (2.7k points)
 

x+y+z=2, 2x-y+5z=-5,-x-2y+2z=1

x+y+z=2 <= eq1

2x-y+5z= -5 <= eq2

-x-2y+2z=1
<= eq3
 
eq1 + eq2
  x + y + z = 2 add to  2x - y + 5z = - 5
 
 3x + 6z = - 3
 x + 2z = -1 <= eq4
 
eq1 + eq3
   x + y + z = 2 add to  - x - 2y + 2z = 1
 y + 3z = 3 <= eq5
 
in eq4 : x = - 1 - 2z <= 6
 
eq6 subtitute to eq3
 
- x -2y+2z = 1 <= eq3
-(-1 - 2z) - 2y + 2z = 1
1 + 2z - 2y + 2z = 1
- 2y + 4z = 0
4z = 2y
2z = y 
 
z = y/2 < eq7
 
eq7 in eq5
 y + 3z = 3 <= eq5
 y + 3(y/2) = 3
2y + 3y = 3(2)
5y = 6
 
y = 6/5
 
y in eq2
2x-y+5z= -5 <= eq2
2x - (6/5) + 5z = - 5
2x - (6/5) + 5z + 5 = 0
10x - 6 + 5(5)z + 5(5) = 0
10x + 25z +25  - 6 = 0
10x + 25z = -19 <eq8
 
x + 2z = -1  <= eq4
x = - 2z - 1 <= x into eq8
 
10(-2z - 1) + 25z = -19
 
correction
 
- 20z - 10 + 25z = -19
- 10 + 5z = -19
5z = - 19 + 10
5z = - 9
 
z = - 9/5
 
What we have computed  y = 6/5; z = -29/5 enter into eq1
 
x+y+z=2 <= eq1
x + (6/5) + (-9/5) = 2
x + (6/5) + (-9/5) - 2  = 0
x + 6/5 - 9/5  - 2  = 0
[(5)x + 6  - 9  - (5)2] = 0
 
5x + 6 - 9 - 10 = 0
5x - 3 = 0
5x = 3
 
x = 3/5
 
correction made
 
x = 3/5 :  y = 6/5 :  z = -9/5  ◄ Ans
by Level 3 User (2.7k points)

Related questions

1 answer
2 answers
asked Dec 13, 2011 in Algebra 2 Answers by anonymous | 1.6k views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
731,660 users