F(x)=exsin(x)/cos(x)=extan(x),
dF/dx=exsec2(x)+extan(x)=ex(sec2(x)+tan(x)),
d2F/dx2=ex(sec2(x)+tan(x))+ex(2sec(x)sec(x)tan(x)+sec2(x)),
d2F/dx2=ex(sec2(x)+tan(x))+ex(2sec2(x)tan(x)+sec2(x)),
d2F/dx2=ex(2sec2(x)+tan(x)+2sec2(x)tan(x))=ex(2sec2(x)(1+tan(x))+tan(x)).
There are other ways to present this derivative, for example, using the identity sec2(x)=tan2(x)+1:
d2F/dx2=ex(2tan3(x)+2tan2(x)+3tan(x)+2), which involves only ex and tan(x).