find the first and second partial derivative of the question
by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Let u=x2-3x, then ∂u/∂x=2x-3, ∂u/∂y=∂2u/∂y2=0;

Let v=(1+x2y2)-n, then ∂v/∂x=-n(2xy2)(1+x2y2)-n-1, ∂v/∂y=-n(2x2y)(1+x2y2)-n-1.

These derivatives may be useful as we progress through the 1st and 2nd derivatives:

 ∂f/∂x, ∂f/∂y, (∂/∂x)(∂f/∂y), (∂/∂y)(∂f/∂x), ∂2f/∂x2, ∂2f/∂y2.

We would expect the 3rd and 4th of these listed derivatives to be equal.

∂f/∂x=∂(uv)/∂x=v∂u/∂x+u∂v/∂x=(1+x2y2)-1(2x-3)-(x2-3x)(2xy2)(1+x2y2)-2,

∂f/∂x=(1+x2y2)-1(2x-3)-(2x3y2-6x2y2)(1+x2y2)-2,

∂f/∂x=[(2x-3)(1+x2y2)-(2x3y2-6x2y2)](1+x2y2)-2,

∂f/∂x=(2x+2x3y2-3-3x2y2-2x3y2+6x2y2)(1+x2y2)-2,

∂f/∂x=(3x2y2+2x-3)(1+x2y2)-2.

Let u=Let u=x2-3x, then ∂u/∂x=2x-3, ∂u/∂y=∂2u/∂y2=0; ∂2u/∂x2=2.

Let v=(1+x2y2)-n, then ∂v/∂x=-n(2xy2)(1+x2y2)-n-1, ∂v/∂y=-n(2x2y)(1+x2y2)-n-1.

These derivatives may be useful as we progress through the 1st and 2nd derivatives:

∂f/∂x, ∂f/∂y, (∂/∂x)(∂f/∂y), (∂/∂y)(∂f/∂x), ∂2f/∂x2, ∂2f/∂y2.

We would expect the 3rd and 4th of these listed derivatives to be equal.

∂f/∂x=∂(uv)/∂x=v∂u/∂x+u∂v/∂x=(1+x2y2)-1(2x-3)-(x2-3x)(2xy2)(1+x2y2)-2,

∂f/∂x=(1+x2y2)-1(2x-3)-(2x3y2-6x2y2)(1+x2y2)-2,

∂f/∂x=[(2x-3)(1+x2y2)-(2x3y2-6x2y2)](1+x2y2)-2,

∂f/∂x=(2x+2x3y2-3-3x2y2-2x3y2+6x2y2)(1+x2y2)-2,

∂f/∂x=(3x2y2+2x-3)(1+x2y2)-2.

∂f/∂y=∂(uv)/∂y=v∂u/∂y+u∂v/∂y=0-(2x2y)(x2-3x)(1+x2y2)-2=(-2x4y+6x3y)(1+x2y2)-2.

Let u=3x2y2+2x-3, then ∂u/∂y=6x2y; v=(1+x2y2)-2.

(∂/∂y)(∂f/∂x)=∂(uv)/∂y=v∂u/∂y+u∂v/∂y,

(∂/∂y)(∂f/∂x)=6x2y(1+x2y2)-2+(3x2y2+2x-3)(-2(2x2y)(1+x2y2)-3,

(∂/∂y)(∂f/∂x)=[(6x2y(1+x2y2)-4x2y(3x2y2+2x-3)](1+x2y2)-3,

(∂/∂y)(∂f/∂x)=(6x2y+6x4y3-12x4y3-8x3y+12x2y)(1+x2y2)-3,

(∂/∂y)(∂f/∂x)=(-6x4y3-8x3y+18x2y)(1+x2y2)-3.

∂f/∂y=(-2x4y+6x3y)(1+x2y2)-2; let u=-2x4y+6x3y, then ∂u/∂x=-8x3y+18x2y; v=(1+x2y2)-2;

(∂/∂x)(∂f/∂y)=∂(uv)/∂x=v∂u/∂x+u∂v/∂x,

(∂/∂x)(∂f/∂y)=(1+x2y2)-2(-8x3y+18x2y)+(-2x4y+6x3y)(-2(2xy2)(1+x2y2)-3,

(∂/∂x)(∂f/∂y)=[(-8x3y+18x2y)(1+x2y2)-4xy2(-2x4y+6x3y)](1+x2y2)-3,

(∂/∂x)(∂f/∂y)=(-8x3y+18x2y-8x5y3+18x4y3+8x5y3-24x4y3)(1+x2y2)-3,

(∂/∂x)(∂f/∂y)=(-6x4y3-8x3y+18x2y)(1+x2y2)-3=(∂/∂y)(∂f/∂x), confirming expectation.

Let u=3x2y2+2x-3, then ∂u/∂x=6xy2+2; v=(1+x2y2)-2.

2f/∂x2=v∂u/∂x+u∂v/∂x=(6xy2+2)(1+x2y2)-2-4xy2(3x2y2+2x-3)(1+x2y2)-3,

2f/∂x2=[(6xy2+2)(1+x2y2)-4xy2(3x2y2+2x-3)](1+x2y2)-3,

2f/∂x2=(6xy2+2+6x3y4+2x2y2-12x3y4-8x2y2+12xy2)(1+x2y2)-3,

2f/∂x2=(-6x3y4-6x2y2+18xy2+2)(1+x2y2)-3.

Let u=-2x4y+6x3y, then ∂u/∂y=-2x4+6x3; v=(1+x2y2)-2.

2f/∂y2=v∂u/∂y+u∂v/∂y=(1+x2y2)-2(-2x4+6x3)-4x2y(-2x4y+6x3y)(1+x2y2)-3,

2f/∂y2=[(1+x2y2)(-2x4+6x3)-4x2y(-2x4y+6x3y)](1+x2y2)-3,

2f/∂y2=(-2x4+6x3-2x6y2+6x5y2+8x6y2-24x5y2)(1+x2y2)-3,

2f/∂y2=(6x6y2-18x5y2-2x4+6x3)(1+x2y2)-3.

by Top Rated User (1.2m points)

Related questions

1 answer
asked Mar 18, 2015 in Calculus Answers by anonymous | 780 views
1 answer
1 answer
1 answer
asked Mar 18, 2015 in Calculus Answers by anonymous | 771 views
1 answer
1 answer
2 answers
1 answer
asked Jun 28, 2013 in Calculus Answers by anonymous | 1.2k views
1 answer
asked Nov 16, 2011 in Calculus Answers by anonymous | 983 views
1 answer
1 answer
asked Sep 2, 2013 in Calculus Answers by sulav ghimire | 7.2k views
1 answer
asked Nov 7, 2011 in Calculus Answers by anonymous | 939 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
731,853 users