A population has a known standard deviation of 1.27, and the sample space contains 85 values. Find the margin of error needed to create a 99% confidence interval estimate of the mean of the population.

The correct answer is 0.3547 but I don't know why I need a step by step explanation please! I want to understand it better
in Statistics Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Standard error=1.27/√85=0.13775.

The critical value for 99% confidence level (2-tailed) is about 2.575 so the margin of error is 2.575×0.13775= 0.3547 aprox.

I used ɑ=1-0.99=0.01 then ɑ/2=0.005 to find the Z value corresponding to 1-0.005=0.9950, which is Z=2.575. That is 2.575 standard deviations from the mean.

by Top Rated User (680k points)

Related questions

1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
83,674 questions
88,560 answers
5,768 users