With respect to right-handed coordinates, let v = [y + z; z + x; x + y] and g = xyz, find curl (gv).
F = F1.i + F2.j + F3.k
Curl(F) = {δF3/δy – δF2/δz}.i – {δF3/δx – δF1/δz}.j + {δF2/δx – δF1/δy}.k
V = [y + z, z + x, x + y], g = xyz
gV = {xy^2z + xyz^2, xyz^2 + x^2yz, x^2yz + xy^2z]
curl(gV) = [(x^2z + 2xyz) – (2xyz + x^2y), - (2xyz + y^2z) + (xy^2 + 2xyz), (yz^2 + 2xyz) – (2xyz + xz^2)]
curl(gV) = [x^2z – x^2y, -y^2z + xy^2, yz^2 – xz^2]
curl(gV) = [x^2(z – y), y^2(x – z), z^2(y – x)]