The half-life of a certian medication in the bloodstream is 36 hours. If you take a dosage of 100 mg, in how may hours will there be 40 mg of the medication in your bloodstream? Round to the nearest hour.

 

Please show work
in Algebra 2 Answers by Level 1 User (240 points)

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

After 36 hrs 50mg remain; after 72 hrs 25mg remain; after 108 hrs 12.5 mg remain. Therefore, 2^-(1/36) is the rate of dissolution per hour. The amount in milligrams after time t hrs is x=100*2^-(t/36). Let's see how this works. At t=36 x=100*2^-1=100/2=50; t=72, x=100*2^-2=100/4=25; t=108 x=100*2^-3=12.5.

So if x=40, 100*2^-(t/36)=40, 2^-(t/36)=0.4. Take logs: -tlog(2)/36=log(0.4)=-0.39794; t=-36log(0.4)/log(2)=47.59 hrs. So the time to reach 40mg is 48 hours, to the nearest hour.

by Top Rated User (1.2m points)

Related questions

0 answers
asked Oct 12, 2019 in Word Problem Answers by anonymous | 969 views
1 answer
asked May 31, 2017 in Word Problem Answers by Maria | 1.2k views
1 answer
asked Mar 31, 2015 in Word Problem Answers by anonymous | 664 views
1 answer
1 answer
1 answer
asked Jun 22, 2012 in Word Problem Answers by anonymous | 721 views
1 answer
asked May 6, 2012 in Word Problem Answers by anonymous | 726 views
1 answer
asked Jan 8, 2019 in Word Problem Answers by tajlen | 1.0k views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
732,244 users