cos(A+B)=cosAcosB-sinAsinB; cos(A-B)=cosAcosB+sinAsinB.
cos(A-B)-cos(A+B)=2sinAsinB, sinAsinB=½(cos(A-B)-cos(A+B)).
Let A=3t and B=2t, then A+B=5t and A-B=t.
sin(2t)sin(3t)=½(cos(t)-cos(5t)).
ℒ{cos(at)}=s/(s2+a2), so ℒ{cos(t)}=s/(s2+1); ℒ{cos(5t)}=s/(s2+25).
ℒ{sin(2t)sin(3t)}=½(s/(s2+1)-s/(s2+25))=
(s/2)(s2+25-s2-1)/(s4+26s2+25)=12s/(s4+26s2+25).
Laplace Transform of given expression is 12s/(s4+26s2+25).
ℒ-1{12s/(s4+26s2+25)}=sin(2t)sin(3t).