Related to conic section
in Other Math Topics by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

The area bounded by the curve x^(2/3)+y^(2/3)=a^(2/3) is given by 4*integral(ydx) between limits [0,a]. These limits are defined by substituting y=0 in the curve equation: x^(2/3)=a^(2/3), (x^(1/3))^2=a^(2/3), x^(1/3)=+a^(1/3), so x=+a. y=(a^(2/3)-x^(2/3))^(3/2), therefore the integral becomes ydx=(a^(2/3)-x^(2/3))^(3/2)dx [0,a]. The curve is split into 4 quadrants because of the symmetry of the astroid about both axes, so there is only a need to find the area of one quadrant, which explains the reason for the limits between 0 and a, and for multiplying the integral by 4.

Let x=a(sinz)^3, so dx=3a(sinz)^2coszdz. Integral(a^2/3-x^2/3))^(3/2)dx) [0,a] becomes:

a*integral((1-(x/a)^(2/3))^(3/2)dx) [0,a]= 

3a^2*integral(1-(sinz)^2)^(3/2)(sinz)^2coszdz) [0,(pi)/2]=

3a^2*integral((cosz)^3(sinz)^2coszdz)=3a^2integral((cosz)^4(sinz)^2dz) [0,(pi)/2].

Consider the following trig identities.

cos4z=2(cos2z)^2-1; 4(cos2z)^2=2cos4z+2 and cos2z=2(cosz)^2-1,

so 2(cosz)^2=cos2z+1 and 8(cosz)^2=4cos2z+4

cos4z=2(2(cosz)^2-1)^2-1=2(4(cosz)^4-4(cosz)^2+1)-1=8(cosz)^4-8(cosz)^2+1.

Therefore, (cosz)^4=(cos4z+8(cosz)^2-1)/8=(cos4z+4cos2z+3)/8.

cos2z=1-2(sinz)^2, so (sinz)^2=(1-cos2z)/2.

Therefore, 3a^2integral((cosz)^4(sinz)^2dz)=

(3a^2/16)integral((cos4z+4cos2z+3)(1-cos2z)dz) [0,(pi)/2]=

(3a^2/16)integral((cos4z+4cos2z+3-cos4zcos2z-4(cos2z)^2-3cos2z)dz) [0,(pi)/2]=

(3a^2/16)integral((cos4z+4cos2z+3-cos4zcos2z-2cos4z-2-3cos2z)dz) [0,(pi)/2]=

(3a^2/16)integral((-cos4z+cos2z+1-cos4zcos2z)dz) [0,(pi)/2].

Now consider the integral of -cos4zcos2zdz. Let dv=cos2zdz and u=cos4z,

then v=sin2z/2 and du=-4sin4zdz. 

Integrating by parts: integral(-cos4zcos2zdz)=-cos4zsin2z/2+integral(2sin2zsin4zdz)=

-cos4zsin2z/2+integral(4(sin2z)^2cos2zdz) because sin4z=2sin2zcos2z.

Let p=(sin2z)^2 then 2sin2z=2p^(1/2) and dp=2sin2zcos2zdz=2p^(1/2).cos2zdz, so

cos2zdz=(p^-(1/2)/2)dp and integral(4(sin2z)^2cos2zdz)=

integral((2p^(1/2)dp)=(4/3)p^(3/2)=(4/3)(sin2z)^3=integral(4(sin2z)^2cos2zdz)

Integral(-cos4zcos2zdz)=-cos4zsin2z/2+(4/3)(sin2z)^3

We can now return to the original integral:

(3a^2/16)integral((-cos4z+cos2z+1-cos4zcos2z)dz) [0,(pi)/2]=

(3a^2/16)(-sin4z/4+sin2z/2+z-cos4zsin2z/2+(4/3)(sin2z)^3) [0,(pi)/2].

All the terns involving sin2z or sin4z become zero under the limits for z=0 or (pi)/2, and all that remains is 3a^2(pi)/32. This is the quadrant area, so the total area is 4 times this=3a^2(pi)/8.

 

 

by Top Rated User (1.2m points)
reshown by

Related questions

1 answer
1 answer
2 answers
asked Apr 8, 2014 in Algebra 1 Answers by anonymous | 537 views
1 answer
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,281 answers
2,420 comments
733,629 users