Find the arc length of the parametric function.
in Calculus Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Question: solve: integral of (sqrt((1/4t)+(1/9sqrt(t))) from 1 to 16.

The expression is: √(1/4 t+1/9∙√t)

Excluding the limits of integration, for the moment,

I=∫√(1/4 t+1/9∙√t)  dt
I=1/6 ∫√(9t+4∙√t)  dt

Let u=√t, then u^2=t and 2u du=dt

I=1/6 ∫√(9u^2+4u)∙2u du

Complete the square
Multiply the quadratic expression by 4 times the coefft of the u^2-term

I=1/36 ∫√(324u^2+144u)∙2u du
I=1/36 ∫√(324u^2+144u+16-16)∙2u du
I=1/36 ∫√((18u+4)^2-16)∙2u du

Let 4w=18u+4, then w=9/2 u+1, u=2/9(w-1), and 2 dw=9 du. This gives us,

I=1/36 ∫√((4w)^2-16)∙2u∙2dw/9  
I=4/9^2  ∫√(w^2-1)∙u dw
I=8/9^3  ∫√(w^2-1)∙(w-1) dw
I=8/9^3  ∫w√(w^2-1) dw - 8/9^3 ∫√(w^2-1) dw
I=8/9^3*I_1 -  8/9^3*I_2

I_1=∫w(w^2-1)^(1/2)  dw = 1/3∙(w^2-1)^(3/2)
I_1=1/3∙(w^2-1)^(3/2)

I_2=∫√(w^2-1) dw=∫(w^2-1)/√(w^2-1) dw=∫w^2/√(w^2-1) dw - ∫1/√(w^2-1) dw
i.e. I_2=I_3 + I_4

 

I_3=∫w^2 (w^2-1)^(-1/2) dw=w∙(w^2-1)^(1/2) - ∫√(w^2-1) dw
I_3=w∙√(w^2-1) - I_2

I_4=∫1/√(w^2-1) dw

Let v^2=w^2-1, then w^2=1+v^2 and w dw=v dv

I_4=∫1/v  (v dv)/w = ∫dv/w = ∫dv/√(1+v^2 )
I_4=asinh(v)

I_4=asinh(√(w^2-1))

I_2=I_3 - I_4
=w√(w^2-1) - I_2 - asinh(√(w^2-1))
2I_2=w√(w^2-1) - asinh(√(w^2-1))
I_2=1/2 {w√(w^2-1) - asinh(√(w^2-1)) }

I=8/9^3 {I_1 - I_2}
I=8/9^3  {1/3∙(w^2-1)^(3/2) - 1/2 {w√(w^2-1) - asinh(√(w^2-1)) } }
I=8/9^3  {√(w^2-1) [1/3 (w^2-1) - 1/2 w]+1/2*asinh(√(w^2-1)) }

Where w=1/2(9u+2), and u=√t.

From w=1/2(9u+2), we can get w^2-1= 9/4 (9t+4√t) and √(w^2-1)=3/2 √(9t+4√t)

Substitution gives us,
I=8/9^3 {3/2 √(9t+4√t)  [3/4 (9t+4√t) - 1/2∙1/2 (9√t+2) ] + 1/2* asinh(3/2√(9t+4√t) ) }
I=8/9^3 {3/8√(9t+4√t)  [3(9t+4√t) - (9√t+2) ]+1/2*asinh(3/2√(9t+4√t) ) }
I=8/9^3 {3/8√(9t+4√t)  [27t+3√t-2] + 1/2* asinh(3/2√(9t+4√t) ) }

 

Evaluating this between the limits of t=1 to t=16, we get,
[t=1]: l1 = 0.4285657238
[t=16]: l2 =  23.02780286

Value = l2 – l1 = 23.02780286 – 0.4285657238  = 22.5992371362

Answer: 22.6 (approx)

by Level 11 User (81.5k points)
edited by

Related questions

1 answer
1 answer
asked Mar 31, 2013 in Calculus Answers by anonymous | 891 views
1 answer
asked Nov 1, 2012 in Calculus Answers by anonymous | 792 views
1 answer
asked Nov 18, 2011 in Calculus Answers by anonymous | 3.9k views
1 answer
1 answer
asked Sep 2, 2012 in Calculus Answers by anonymous | 923 views
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,285 answers
2,420 comments
735,388 users