what is the solution set for {5(4x+y)+7=-1 and 4(x-5y+3z)=23 and 16(-1+y)=-5(z-5y)
in Algebra 1 Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Expanding the parentheses and combining some values:

20x+5y=-8, so 20x+5y+0z=-8,

4x-20y+12z=23,

-5z+9y=-16, so 0x+9y-5z=-16.

Let the determinant D=

| 20   5   0 |

|  4 -20 12 | = 20(100-108)-5(-20-0)+0=-160+100=-60.

|  0   9   -5 |

Determinant Dx=

|  -8   5   0 |

| 23 -20 12 | = -8(100-108)-5(-115+192)+0=64-385=-321.

| -16   9   -5 |

x=Dx/D=-321/-60=5.35.

Determinant Dy=

| 20  -8   0 |

|  4  23 12 | = 20(-115+192)+8(-20-0)+0=1540-160=1380

|  0 -16  -5 |

y=Dy/D=1380/-60=-23.

Determinant Dz=

| 20   5  -8 |

|  4 -20 23 | = 20(320-207)-5(-64-0)-8(36-0)=2260+320-288=2292

|  0   9 -16 |

z=Dz/D=2292/-60=-38.2.

Solution of this system of equations: x=5.35, y=-23, z=-38.2.

by Top Rated User (982k points)

Related questions

Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
86,974 questions
95,835 answers
2,361 comments
24,325 users