solve these equations using matrices without a calculator.  x=y=z=6, 2x=y-4z=-15, 5x-3y+z=-10
in Algebra 2 Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

x-y-z=6

2x-y-4z=-15

5x-3y+z=-10

Your equations, as written, had typos in them. I've assumed that some of the equal-signs should have been minus-signs and altered then appropriately.

In matrix form the equations would be

AX = b

Where A is the matrix

1 -1 -1

2 -1 -4

5 -3 1

X is your unknown column vector [x y z] and b is a scalar column vector [ 6 -15 -10].

The solution is given by X = A^(-1)b, where A^(-1) is the inverse matrix of A.

We now do Gauss-Jordan elimination on A to get its inverse. We write this out as,

1 -1 -1     |  1   0   0  --- [Row 1]

2 -1 -4     |  0   1   0  --- [Row 2]

5 -3 1      |  0   0   1  --- [Row 3]

R2 - 2*R1, R3 - 5*R1,

 

1 -1 -1     |  1   0   0  --- [Row 1]

0  1 -2     |  -2  1   0  --- [Row 2]

0  2  6     |  -5  0   1  --- [Row 3]

R1 + R2, R3 - 2*R2

 

1  0 -3     |  -1   1   0  --- [Row 1]
0  1 -2     |  -2   1   0  --- [Row 2]
0  0 10    |  -1  -2   1  --- [Row 3]


R3/10,

 

1  0 -3     |  -1     1     0    --- [Row 1]
0  1 -2     |  -2     1     0    --- [Row 2]
0  0  1     | -0.1 -0.2  0.1  --- [Row 3]

R1 + 3*R3, R2 + 2*R3,

 

1  0  0     |  -1.3   0.4   0.3  --- [Row 1]
0  1  0     |  -2.2   0.6   0.2  --- [Row 2]
0  0  1     |  -0.1  -0.2   0.1  --- [Row 3]


Now that we have an identity marix on the lhs, then the rhs is the inverse matrix, so

A^(-1) =    |  -1.3   0.4   0.3  |
                 |  -2.2   0.6   0.2  |
                 |  -0.1  -0.2   0.1  |

And X = A^(-1)b

       X  =    |  -1.3   0.4   0.3 | |   6  | = |-1.3*6 +0.4*(-15) + 0.3*(-10)  |
                 |  -2.2   0.6   0.2  | | -15 |    |-2.2*6 +0.6*(-15) + 0.2*(-10) |
                 |  -0.1  -0.2   0.1  | | -10 |    |-0.1*6 -0.2*(-15) + 0.1*(-10)  |

       X  =   | -7.8 - 6 - 3   |
                 | -13.2 - 9 - 2 |
                 | -0.6 + 3 - 1  |

       X  =   | -16.8  |
                 | -24.2 |
                 |    1.4 |

The solution is: x = -16.8, y = -24.2, z = 1.4

by Level 11 User (81.5k points)
edited by

Related questions

1 answer
1 answer
2 answers
asked Oct 14, 2011 in Algebra 2 Answers by anonymous | 1.8k views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,516 questions
100,279 answers
2,420 comments
733,458 users