((x^2-1)/sqrt(2x-1) )
\cdot%20(2x-1)^{-0.5}%20\;%20dx)
Integrating by parts - let u= x^2-1 so u' = 2x, let v' = (2x-1)^-0.5 so v= 2(2x-1)^0.5
(int by parts formula) 
\cdot%202\;%20\sqrt{2x-1}%20-%20\int%202x%20\cdot%20\sqrt{2x-1}%20\;%20dx)
Integrating by parts again - u=2x, u'=2 v'= 2(2x-1)^0.5, so v=2/3 (2x-1)^1.5\cdot%202\;%20\sqrt{2x-1}%20-%20(2x\cdot%20\frac{2}{3}(2x-1)^{3/2}%20-%20\frac{4}{3}%20\int(2x-1)^{3/2}))
\cdot%202\;%20\sqrt{2x-1}%20-%20(2x\cdot%20\frac{2}{3}(2x-1)^{3/2}%20-%20\frac{4}{3}%20\cdot%20\frac%20{1}{5}(2x-1)^{5/2})%20+%20k)
Feel free to tidy this one up, but the hard part is done :P Also, if i have done any part wrong, please message me as i kept confusing myself with the latex code which is designed to make it easier!